You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
# create grouped Pandas DataFramegpdf=pdf.groupby('bins', as_index=False)
# create difference table statistics from gpdf in a new DataFramediffs_without_sums=stat_dataframe(gpdf)
# calculate sums rowrow=get_sums(diffs_without_sums)[diffs_without_sums.columns]
row['mean'] =0ifrow['count'] >0:
row['mean'] =row['tot_change'] /row['count']
row['perc_cut'] =sums_perc_cutrow['perc_inc'] =sums_perc_incrow['share_of_change'] =1.0# avoid rounding errordiffs=diffs_without_sums.append(row)
# append top-decile-detail rowsifgroupby=='weighted_deciles':
pdf=gpdf.get_group(10) # top decile as its own DataFramepdf=add_quantile_bins(copy.deepcopy(pdf), income_measure, 10)
# TODO: following statement generates this IGNORED error:# ValueError: Buffer dtype mismatch,# expected 'Python object' but got 'long'# Exception ValueError: "Buffer dtype mismatch,# expected 'Python object' but got 'long'"# in 'pandas._libs.lib.is_bool_array' ignored# ^^^^^^^# It is hoped that Pandas PR#17841, which is scheduled for <================# inclusion in Pandas version 0.22.0 (Jan 2018), will fix this. <===========pdf['bins'].replace(to_replace=[1, 2, 3, 4, 5],
value=[0, 0, 0, 0, 0], inplace=True)
pdf['bins'].replace(to_replace=[6, 7, 8, 9],
value=[1, 1, 1, 1], inplace=True)
pdf['bins'].replace(to_replace=[10], value=[2], inplace=True)
gpdf=pdf.groupby('bins', as_index=False)
sdf=stat_dataframe(gpdf)
diffs=diffs.append(sdf, ignore_index=True)
returndiffs
Problem description
Get ignored error message described in code fragment above, which is causing Tax-Calculator users confusion (see, for example, Tax-Calculator issue 1799). If there is an error, why does Pandas ignore it? If there is not an error, why does Pandas print an error message and then ignore it? Based on the conversation in #18252, we had expected this error message to go away after we upgraded to 0.22.0, but that doesn't seem to be the case.
Expected Output
I would expect a non-ignored error message that stops program execution if I am using pandas incorrectly.
Or I would expect no error message if I am using pandas correctly.
But I get neither.
Output of pd.show_versions()
iMac2:tax-calculator mrh$ python
Python 2.7.14 |Anaconda custom (64-bit)| (default, Oct 5 2017, 02:28:52)
[GCC 4.2.1 Compatible Clang 4.0.1 (tags/RELEASE_401/final)] on darwin
Type "help", "copyright", "credits" or "license" for more information. >>> import pandas as pd >>> pd.show_versions()
Code Sample, a copy-pastable example if possible
Problem description
Get ignored error message described in code fragment above, which is causing Tax-Calculator users confusion (see, for example, Tax-Calculator issue 1799). If there is an error, why does Pandas ignore it? If there is not an error, why does Pandas print an error message and then ignore it? Based on the conversation in #18252, we had expected this error message to go away after we upgraded to 0.22.0, but that doesn't seem to be the case.
Expected Output
I would expect a non-ignored error message that stops program execution if I am using pandas incorrectly.
Or I would expect no error message if I am using pandas correctly.
But I get neither.
Output of
pd.show_versions()
iMac2:tax-calculator mrh$ python
Python 2.7.14 |Anaconda custom (64-bit)| (default, Oct 5 2017, 02:28:52)
[GCC 4.2.1 Compatible Clang 4.0.1 (tags/RELEASE_401/final)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>
import pandas as pd>>>
pd.show_versions()INSTALLED VERSIONS
commit: None
python: 2.7.14.final.0
python-bits: 64
OS: Darwin
OS-release: 16.7.0
machine: x86_64
processor: i386
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: None.None
pandas: 0.22.0
pytest: 3.2.1
pip: 9.0.1
setuptools: 36.5.0.post20170921
Cython: 0.26.1
numpy: 1.13.3
scipy: 0.19.1
pyarrow: None
xarray: None
IPython: 5.4.1
sphinx: 1.6.3
patsy: 0.4.1
dateutil: 2.6.1
pytz: 2017.2
blosc: None
bottleneck: 1.2.1
tables: 3.4.2
numexpr: 2.6.2
feather: None
matplotlib: 2.1.0
openpyxl: 2.4.8
xlrd: 1.1.0
xlwt: 1.2.0
xlsxwriter: 1.0.2
lxml: 4.1.0
bs4: 4.6.0
html5lib: 0.999999999
sqlalchemy: 1.1.13
pymysql: None
psycopg2: None
jinja2: 2.9.6
s3fs: None
fastparquet: None
pandas_gbq: None
pandas_datareader: None
>>>
The text was updated successfully, but these errors were encountered: