We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Setup:
In [2]: dti_naive = pd.date_range('2017-01-01', periods=4) ...: dti_east = pd.date_range('2017-01-01', periods=4, tz='US/Eastern') ...: dti_west = pd.date_range('2017-01-01', periods=4, tz='US/Pacific') ...:
Attempting to convert between aware always converts to UTC and becomes naive:
In [3]: dti_west.astype(dti_east.dtype) Out[3]: DatetimeIndex(['2017-01-01 08:00:00', '2017-01-02 08:00:00', '2017-01-03 08:00:00', '2017-01-04 08:00:00'], dtype='datetime64[ns]', freq='D')
Converting naive to aware does nothing:
In [4]: dti_naive.astype(dti_east.dtype) Out[4]: DatetimeIndex(['2017-01-01', '2017-01-02', '2017-01-03', '2017-01-04'], dtype='datetime64[ns]', freq='D')
Converting aware to naive appears to work:
In [5]: dti_west.astype(dti_naive.dtype) Out[5]: DatetimeIndex(['2017-01-01 08:00:00', '2017-01-02 08:00:00', '2017-01-03 08:00:00', '2017-01-04 08:00:00'], dtype='datetime64[ns]', freq='D')
For [3]:
[3]
In [3]: dti_west.astype(dti_east.dtype) Out[3]: DatetimeIndex(['2017-01-01 03:00:00-05:00', '2017-01-02 03:00:00-05:00', '2017-01-03 03:00:00-05:00', '2017-01-04 03:00:00-05:00'], dtype='datetime64[ns, US/Eastern]', freq='D')
For [4]:
[4]
In [4]: dti_naive.astype(dti_east.dtype) Out[4]: DatetimeIndex(['2017-01-01 00:00:00-05:00', '2017-01-02 00:00:00-05:00', '2017-01-03 00:00:00-05:00', '2017-01-04 00:00:00-05:00'], dtype='datetime64[ns, US/Eastern]', freq='D')
pd.show_versions()
commit: a18d725 python: 3.6.1.final.0 python-bits: 64 OS: Windows OS-release: 10 machine: AMD64 processor: Intel64 Family 6 Model 78 Stepping 3, GenuineIntel byteorder: little LC_ALL: None LANG: None LOCALE: None.None
pandas: 0.22.0.dev0+433.ga18d725 pytest: 3.1.2 pip: 9.0.1 setuptools: 27.2.0 Cython: 0.25.2 numpy: 1.13.1 scipy: 0.19.1 pyarrow: 0.6.0 xarray: 0.9.6 IPython: 6.1.0 sphinx: 1.5.6 patsy: 0.4.1 dateutil: 2.6.0 pytz: 2017.2 blosc: None bottleneck: None tables: 3.4.2 numexpr: 2.6.2 feather: 0.4.0 matplotlib: 2.0.2 openpyxl: 2.4.8 xlrd: 1.1.0 xlwt: 1.3.0 xlsxwriter: 0.9.8 lxml: 3.8.0 bs4: None html5lib: 0.999 sqlalchemy: 1.1.13 pymysql: None psycopg2: None jinja2: 2.9.6 s3fs: None fastparquet: 0.1.0 pandas_gbq: None pandas_datareader: None
The text was updated successfully, but these errors were encountered:
Successfully merging a pull request may close this issue.
Code Sample, a copy-pastable example if possible
Setup:
Attempting to convert between aware always converts to UTC and becomes naive:
Converting naive to aware does nothing:
Converting aware to naive appears to work:
Expected Output
For
[3]
:For
[4]
:Output of
pd.show_versions()
INSTALLED VERSIONS
commit: a18d725
python: 3.6.1.final.0
python-bits: 64
OS: Windows
OS-release: 10
machine: AMD64
processor: Intel64 Family 6 Model 78 Stepping 3, GenuineIntel
byteorder: little
LC_ALL: None
LANG: None
LOCALE: None.None
pandas: 0.22.0.dev0+433.ga18d725
pytest: 3.1.2
pip: 9.0.1
setuptools: 27.2.0
Cython: 0.25.2
numpy: 1.13.1
scipy: 0.19.1
pyarrow: 0.6.0
xarray: 0.9.6
IPython: 6.1.0
sphinx: 1.5.6
patsy: 0.4.1
dateutil: 2.6.0
pytz: 2017.2
blosc: None
bottleneck: None
tables: 3.4.2
numexpr: 2.6.2
feather: 0.4.0
matplotlib: 2.0.2
openpyxl: 2.4.8
xlrd: 1.1.0
xlwt: 1.3.0
xlsxwriter: 0.9.8
lxml: 3.8.0
bs4: None
html5lib: 0.999
sqlalchemy: 1.1.13
pymysql: None
psycopg2: None
jinja2: 2.9.6
s3fs: None
fastparquet: 0.1.0
pandas_gbq: None
pandas_datareader: None
The text was updated successfully, but these errors were encountered: