Skip to content

BUG: date_range is inconsistent when given mixed tz aware and tz unaware start/end #18431

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
jschendel opened this issue Nov 22, 2017 · 1 comment · Fixed by #18488
Closed
Labels
Bug Timezones Timezone data dtype
Milestone

Comments

@jschendel
Copy link
Member

Code Sample, a copy-pastable example if possible

Setup:

In [2]: dt1_tz = pd.Timestamp('2017-01-01', tz='US/Eastern')

In [3]: dt1_no_tz = pd.Timestamp('2017-01-01')

In [4]: dt2_tz = pd.Timestamp('2017-01-04', tz='US/Eastern')

In [5]: dt2_no_tz = pd.Timestamp('2017-01-04')

If start is tz aware and end is not, date_range coerces to tz aware:

In [6]: pd.date_range(start=dt1_tz, end=dt2_no_tz)
Out[6]:
DatetimeIndex(['2017-01-01 00:00:00-05:00', '2017-01-02 00:00:00-05:00',
               '2017-01-03 00:00:00-05:00', '2017-01-04 00:00:00-05:00'],
              dtype='datetime64[ns, US/Eastern]', freq='D')

If end is tz aware and start is not, date_range raises:

In [7]: pd.date_range(start=dt1_no_tz, end=dt2_tz)
---------------------------------------------------------------------------
AssertionError: Inputs must both have the same timezone, None != US/Eastern

During handling of the above exception, another exception occurred:

TypeError: Start and end cannot both be tz-aware with different timezones

Same behavior for DatetimeIndex:

In [9]: pd.DatetimeIndex(start=dt1_tz, end=dt2_no_tz, freq='D')
Out[9]:
DatetimeIndex(['2017-01-01 00:00:00-05:00', '2017-01-02 00:00:00-05:00',
               '2017-01-03 00:00:00-05:00', '2017-01-04 00:00:00-05:00'],
              dtype='datetime64[ns, US/Eastern]', freq='D')

In [10]: pd.DatetimeIndex(start=dt1_no_tz, end=dt2_tz, freq='D')
---------------------------------------------------------------------------
AssertionError: Inputs must both have the same timezone, None != US/Eastern

During handling of the above exception, another exception occurred:

TypeError: Start and end cannot both be tz-aware with different timezones

Problem description

Behavior is inconsistent for mixed tz aware and tz unaware start/end.

Expected Output

I'd expect this to be consistent in both cases. If my understanding is correct, this should raise in both cases.

Output of pd.show_versions()

INSTALLED VERSIONS

commit: None
python: 3.6.3.final.0
python-bits: 64
OS: Windows
OS-release: 10
machine: AMD64
processor: Intel64 Family 6 Model 78 Stepping 3, GenuineIntel
byteorder: little
LC_ALL: None
LANG: None
LOCALE: None.None

pandas: 0.21.0
pytest: 3.1.2
pip: 9.0.1
setuptools: 27.2.0
Cython: 0.26
numpy: 1.13.3
scipy: 0.19.1
pyarrow: None
xarray: None
IPython: 6.1.0
sphinx: 1.5.6
patsy: 0.4.1
dateutil: 2.6.1
pytz: 2017.2
blosc: None
bottleneck: 1.2.1
tables: 3.2.2
numexpr: 2.6.4
feather: None
matplotlib: 2.0.2
openpyxl: 2.4.7
xlrd: 1.0.0
xlwt: 1.2.0
xlsxwriter: 0.9.6
lxml: 3.7.3
bs4: 4.6.0
html5lib: 0.999
sqlalchemy: 1.1.9
pymysql: None
psycopg2: None
jinja2: 2.9.6
s3fs: None
fastparquet: None
pandas_gbq: None
pandas_datareader: None

@jreback
Copy link
Contributor

jreback commented Nov 22, 2017

yep both should raise

@jreback jreback added this to the Next Major Release milestone Nov 22, 2017
@jreback jreback modified the milestones: Next Major Release, 0.21.1 Nov 25, 2017
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Bug Timezones Timezone data dtype
Projects
None yet
Development

Successfully merging a pull request may close this issue.

2 participants