You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
If you specify the unit, the difference is already much smaller:
In [15]: s = pd.Series(np.arange(1352500101000000000,1420438546000000000,6000000000))
In [16]: %timeit pd.to_datetime(s)
1.65 s ± 54.3 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [17]: %timeit s.astype('datetime64[ns]')
64 ms ± 965 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
In [18]: %timeit pd.to_datetime(s, unit='ns')
259 ms ± 4.72 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
(but still the difference seems larger than it should be)
the rest of the diff is related to #17449, this ends up being copied 3 times internally
In [10]: %timeit pd.to_datetime(s, unit='ns')
107 ms +- 2.16 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
In [11]: %timeit s.astype('datetime64[ns]')
20.3 ms +- 283 us per loop (mean +- std. dev. of 7 runs, 10 loops each)
In [12]: %timeit s.copy()
22.3 ms +- 533 us per loop (mean +- std. dev. of 7 runs, 10 loops each)
There is huge performance difference between, to_datetime and using astype for a epoch time series:
Pandas
to_datetime
performance :Pandas
astype('datetime64[ns]')
performance :I am unable to find reason for this performance variance, any help will be great
Thanks!
Output of
pd.show_versions()
INSTALLED VERSIONS
commit: None
python: 3.5.2.final.0
python-bits: 64
OS: Linux
OS-release: 4.4.0-79-generic
machine: x86_64
processor:
byteorder: little
LC_ALL: en_US.UTF-8
LANG: C.UTF-8
LOCALE: en_US.UTF-8
pandas: 0.20.2
pytest: 3.1.2
pip: 8.1.2
setuptools: 27.2.0
Cython: 0.25.2
numpy: 1.12.1
scipy: 0.19.0
xarray: 0.9.6
IPython: 6.1.0
sphinx: None
patsy: 0.4.1
dateutil: 2.6.0
pytz: 2017.2
blosc: None
bottleneck: 1.2.0
tables: 3.4.2
numexpr: 2.6.2
feather: 0.4.0
matplotlib: 2.0.0
openpyxl: 2.5.0a2
xlrd: 1.0.0
xlwt: None
xlsxwriter: None
lxml: None
bs4: 4.5.3
html5lib: 0.999
sqlalchemy: 1.1.5
pymysql: None
psycopg2: None
jinja2: 2.9.5
s3fs: 0.1.0
pandas_gbq: None
pandas_datareader: 0.4.0
The text was updated successfully, but these errors were encountered: