You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
df.groupby('some_column').aggregate({'some_datetime64_column': 'some_aggregate_function'}) and df.groupby('some_column').aggregate('some_aggregate_function') should return the same result for some_datetime64_column of type datetime64 with specified timezones
@AlexandreBeaulne Thanks for the report! This is fixed in master in the meantime (and this will be in the 0.20.0 release):
In [68]: df.groupby('groups').aggregate('max')
Out[68]:
dt
groups
a 2017-03-21 02:23:00+08:00
b 2017-03-21 04:23:00+08:00
In [69]: df.groupby('groups').aggregate({'dt': 'max'})
Out[69]:
dt
groups
a 2017-03-21 02:23:00+08:00
b 2017-03-21 04:23:00+08:00
Code Sample, a copy-pastable example if possible
Problem description
Expected Output
df.groupby('some_column').aggregate({'some_datetime64_column': 'some_aggregate_function'})
anddf.groupby('some_column').aggregate('some_aggregate_function')
should return the same result forsome_datetime64_column
of typedatetime64
with specified timezonesOutput of
pd.show_versions()
INSTALLED VERSIONS
commit: None
python: 3.5.2.final.0
python-bits: 64
OS: Linux
OS-release: 3.10.103
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: None
LOCALE: None.None
pandas: 0.19.2
nose: 1.3.7
pip: 8.1.2
setuptools: 27.2.0
Cython: 0.25.2
numpy: 1.11.1
scipy: 0.18.1
statsmodels: 0.6.1
xarray: None
IPython: 5.3.0
sphinx: 1.4.6
patsy: 0.4.1
dateutil: 2.5.3
pytz: 2016.6.1
blosc: None
bottleneck: 1.1.0
tables: 3.2.3.1
numexpr: 2.6.1
matplotlib: 1.5.1
openpyxl: 2.3.2
xlrd: 1.0.0
xlwt: 1.1.2
xlsxwriter: 0.9.3
lxml: 3.6.4
bs4: 4.5.1
html5lib: None
httplib2: None
apiclient: None
sqlalchemy: 1.0.13
pymysql: 0.7.9.None
psycopg2: 2.6.2 (dt dec pq3 ext lo64)
jinja2: 2.8
boto: 2.42.0
pandas_datareader: 0.2.1
The text was updated successfully, but these errors were encountered: