.loc indexing of heterogeneous dataframe returns different dtype #15220
Labels
Bug
Duplicate Report
Duplicate issue or pull request
Indexing
Related to indexing on series/frames, not to indexes themselves
Milestone
Code Sample
produces the following output:
type of df_create.loc[0,'d1']: <class 'numpy.float64'>
type of df_create.loc[0,'d2']: <class 'numpy.float64'>
type of df_create.iloc[0,0]: <class 'numpy.float64'>
type of df_create.iloc[0,1]: <class 'numpy.float64'>
type of df_create.ix[0,0]: <class 'numpy.float64'>
type of df_create.ix[0,1]: <class 'numpy.float64'>
type of df_mod.loc[0,'d1']: <class 'numpy.float64'>
type of df_mod.loc[0,'d2']: <class 'numpy.float64'>
type of df_mod.iloc[0,0]: <class 'numpy.float64'>
type of df_mod.iloc[0,1]: <class 'numpy.float64'>
type of df_mod.ix[0,0]: <class 'numpy.float64'>
type of df_mod.ix[0,1]: <class 'numpy.float64'>
All dtypes for dataframe df_mod:
d1 uint8
d2 float64
d3 uint8
d4 uint8
d5 uint8
dtype: object
Problem description
As far as I can see, the indexing mechanism is converting non-float64s to float64s. According to the dtypes, the internal representation of the data remains uint8, but when exposed by some indexing mechanism, the uint8 data is converted to float64.
Expected Output
type of df_create.loc[0,'d1']: <class 'numpy.uint8'>
type of df_create.loc[0,'d2']: <class 'numpy.float64'>
type of df_create.iloc[0,0]: <class 'numpy.uint8'>
type of df_create.iloc[0,1]: <class 'numpy.float64'>
type of df_create.ix[0,0]: <class 'numpy.uint8'>
type of df_create.ix[0,1]: <class 'numpy.float64'>
type of df_mod.loc[0,'d1']: <class 'numpy.uint8'>
type of df_mod.loc[0,'d2']: <class 'numpy.float64'>
type of df_mod.iloc[0,0]: <class 'numpy.uint8'>
type of df_mod.iloc[0,1]: <class 'numpy.float64'>
type of df_mod.ix[0,0]: <class 'numpy.uint8'>
type of df_mod.ix[0,1]: <class 'numpy.float64'>
Output of
pd.show_versions()
commit: None
python: 3.5.2.final.0
python-bits: 64
OS: Windows
OS-release: 7
machine: AMD64
processor: Intel64 Family 6 Model 30 Stepping 5, GenuineIntel
byteorder: little
LC_ALL: None
LANG: None
LOCALE: None.None
pandas: 0.19.2
nose: 1.3.7
pip: 9.0.1
setuptools: 27.2.0
Cython: 0.23.4
numpy: 1.12.0
scipy: 0.18.0
statsmodels: 0.6.1
xarray: 0.8.2
IPython: 4.0.1
sphinx: 1.3.1
patsy: 0.4.0
dateutil: 2.6.0
pytz: 2016.10
blosc: None
bottleneck: 1.1.0
tables: 3.2.2
numexpr: 2.6.1
matplotlib: 1.5.1
openpyxl: 2.4.0
xlrd: 0.9.4
xlwt: 1.0.0
xlsxwriter: 0.7.7
lxml: 3.4.4
bs4: 4.4.1
html5lib: None
httplib2: None
apiclient: None
sqlalchemy: 1.0.9
pymysql: None
psycopg2: None
jinja2: 2.8
boto: 2.38.0
pandas_datareader: None
The text was updated successfully, but these errors were encountered: