Pandas 0.12 is much faster than Pandas 0.18 #14549
Labels
Indexing
Related to indexing on series/frames, not to indexes themselves
Performance
Memory or execution speed performance
Usage Question
Hello,
I am running the code below in pandas 0.18 and benchmarking it against pandas 0.12 and the profiling shows that 0.18 performs much slower on this. I put the output in the details section. Could you please advise?
Thank you so very much for your help,
Giuliano
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 14.176 14.176 :1()
1519 0.002 0.000 0.002 0.000 init.py:157(iteritems)
1 0.000 0.000 0.000 0.000 init.py:22(find_module)
2 0.000 0.000 0.000 0.000 _methods.py:34(_prod)
1027 0.001 0.000 0.023 0.000 _methods.py:37(_any)
7 0.000 0.000 0.000 0.000 _methods.py:40(_all)
6 0.020 0.003 2.945 0.491 algorithms.py:145(factorize)
6 0.000 0.000 0.007 0.001 algorithms.py:616(_get_data_algo)
11 0.000 0.000 0.000 0.000 algorithms.py:807(_get_take_nd_function)
11 0.012 0.001 0.527 0.048 algorithms.py:840(take_nd)
499 0.002 0.000 0.004 0.000 base.py:1016(_convert_slice_indexer)
2002 0.001 0.000 0.004 0.000 base.py:106(_reset_cache)
1 0.000 0.000 0.000 0.000 base.py:1136(_cleanup)
14 0.000 0.000 0.000 0.000 base.py:1143(_engine)
15 0.000 0.000 0.000 0.000 base.py:1146()
1 0.000 0.000 0.000 0.000 base.py:1172(inferred_type)
6 0.000 0.000 0.000 0.000 base.py:1233(contains)
16/14 0.001 0.000 0.003 0.000 base.py:124(new)
10 0.000 0.000 0.000 0.000 base.py:1247(getitem)
1 0.000 0.000 0.000 0.000 base.py:1281(_ensure_compat_append)
1 0.000 0.000 0.000 0.000 base.py:1308(append)
1 0.000 0.000 0.000 0.000 base.py:1326(_ensure_compat_concat)
499 0.005 0.000 0.047 0.000 base.py:1360(take)
4 0.000 0.000 0.000 0.000 base.py:1415(hasnans)
5 0.000 0.000 0.000 0.000 base.py:1507(equals)
1 0.000 0.000 0.000 0.000 base.py:1520(identical)
1 0.000 0.000 0.003 0.003 base.py:169(_box_values)
1 0.000 0.000 0.000 0.000 base.py:1770(_wrap_union_result)
1 0.000 0.000 0.000 0.000 base.py:1774(intersection)
2007 0.013 0.000 0.043 0.000 base.py:1915(get_loc)
2 0.000 0.000 0.000 0.000 base.py:2028(get_indexer)
998 0.002 0.000 0.002 0.000 base.py:218(freqstr)
2 0.000 0.000 0.000 0.000 base.py:2201(_possibly_promote)
1 0.000 0.000 0.000 0.000 base.py:227(inferred_freq)
1 0.000 0.000 0.000 0.000 base.py:2276(_can_reindex)
1 0.000 0.000 0.000 0.000 base.py:2295(reindex)
998 0.001 0.000 0.002 0.000 base.py:2795(_maybe_cast_indexer)
1497 0.001 0.000 0.002 0.000 base.py:2810(_validate_indexer)
1 0.000 0.000 0.000 0.000 base.py:3001(delete)
1 0.000 0.000 0.000 0.000 base.py:3031(drop)
1517 0.006 0.000 0.011 0.000 base.py:309(_simple_new)
2 0.000 0.000 0.000 0.000 base.py:321(_isnan)
2 0.000 0.000 0.000 0.000 base.py:326(hasnans)
3527 0.002 0.000 0.004 0.000 base.py:3381(_ensure_index)
1 0.000 0.000 0.000 0.000 base.py:3412(_get_na_value)
2002 0.003 0.000 0.012 0.000 base.py:3417(_ensure_frozen)
1 0.000 0.000 0.000 0.000 base.py:3425(_ensure_has_len)
2506 0.011 0.000 0.070 0.000 base.py:346(_shallow_copy)
1 0.000 0.000 0.000 0.000 base.py:354(shallow_copy_with_infer)
5 0.000 0.000 0.000 0.000 base.py:383(is)
3523 0.003 0.000 0.003 0.000 base.py:403(_reset_identity)
3579 0.002 0.000 0.003 0.000 base.py:409(len)
1 0.000 0.000 0.000 0.000 base.py:415(array)
4 0.000 0.000 0.000 0.000 base.py:430(dtype)
2542 0.003 0.000 0.006 0.000 base.py:440(values)
10 0.000 0.000 0.000 0.000 base.py:445(get_values)
5 0.000 0.000 0.000 0.000 base.py:490(_coerce_to_ndarray)
2508 0.011 0.000 0.014 0.000 base.py:506(_get_attributes_dict)
2 0.000 0.000 0.000 0.000 base.py:510(view)
6001 0.011 0.000 0.015 0.000 base.py:711(getitem)
2002 0.001 0.000 0.002 0.000 base.py:774(_shallow_copy)
1 0.000 0.000 0.000 0.000 base.py:778(_assert_can_do_setop)
2 0.000 0.000 0.000 0.000 base.py:791(nlevels)
1 0.000 0.000 0.000 0.000 base.py:795(_get_names)
2003 0.001 0.000 0.002 0.000 base.py:798(_set_names)
2003 0.004 0.000 0.013 0.000 base.py:806(set_names)
2002 0.002 0.000 0.015 0.000 base.py:865(rename)
8 0.000 0.000 0.000 0.000 base.py:870(_values)
2 0.000 0.000 0.000 0.000 base.py:914(is_monotonic)
1 0.000 0.000 0.000 0.000 base.py:919(is_monotonic_increasing)
10 0.000 0.000 0.000 0.000 base.py:938(is_unique)
499 0.001 0.000 0.005 0.000 base.py:972(_convert_scalar_indexer)
6 0.003 0.001 3.767 0.628 categorical.py:222(init)
4 0.010 0.003 2.967 0.742 categorical.py:374(from_array)
8 0.000 0.000 0.000 0.000 categorical.py:436(_get_codes)
6 0.000 0.000 0.003 0.000 categorical.py:470(_validate_categories)
6 0.000 0.000 0.000 0.000 categorical.py:534(_get_categories)
6 0.000 0.000 0.000 0.000 categorical.py:565(set_ordered)
1500 0.002 0.000 0.002 0.000 collections.py:78(iter)
4 0.000 0.000 0.000 0.000 common.py:1011(_possibly_cast_to_datetime)
10 0.000 0.000 0.802 0.080 common.py:1111(_possibly_infer_to_datetimelike)
2 0.000 0.000 0.801 0.401 common.py:1147(_try_datetime)
2497 0.005 0.000 0.017 0.000 common.py:1203(is_bool_indexer)
2 0.000 0.000 0.000 0.000 common.py:1226(_default_index)
2 0.000 0.000 0.000 0.000 common.py:1268(_try_sort)
1 0.000 0.000 0.000 0.000 common.py:1276(_count_not_none)
3 0.000 0.000 0.000 0.000 common.py:1277()
11 0.000 0.000 0.000 0.000 common.py:1380(_asarray_tuplesafe)
1 0.000 0.000 0.000 0.000 common.py:1412(_index_labels_to_array)
3 0.000 0.000 0.000 0.000 common.py:1427(_maybe_make_list)
1 0.000 0.000 0.000 0.000 common.py:1456(is_period_arraylike)
12 0.000 0.000 0.000 0.000 common.py:1491(_get_dtype)
2055 0.006 0.000 0.009 0.000 common.py:1511(_get_dtype_type)
5 0.000 0.000 0.000 0.000 common.py:1532(is_dtype_equal)
4 0.000 0.000 0.000 0.000 common.py:1550(is_integer_dtype)
4 0.000 0.000 0.000 0.000 common.py:1561(is_int_or_datetime_dtype)
1011 0.002 0.000 0.005 0.000 common.py:1567(is_datetime64_dtype)
64 0.000 0.000 0.000 0.000 common.py:1575(is_datetime64tz_dtype)
8 0.000 0.000 0.000 0.000 common.py:1592(is_timedelta64_dtype)
6 0.000 0.000 0.000 0.000 common.py:1602(is_datetime_or_timedelta_dtype)
1 0.000 0.000 0.000 0.000 common.py:165(_isnull_ndarraylike)
6 0.000 0.000 0.000 0.000 common.py:1664(needs_i8_conversion)
1 0.000 0.000 0.000 0.000 common.py:1675(is_string_dtype)
1 0.000 0.000 0.000 0.000 common.py:1680(is_string_like_dtype)
6 0.000 0.000 0.000 0.000 common.py:1686(is_float_dtype)
8 0.000 0.000 0.000 0.000 common.py:1696(is_bool_dtype)
6 0.000 0.000 0.000 0.000 common.py:1705(is_sparse)
58 0.000 0.000 0.001 0.000 common.py:1710(is_datetimetz)
2 0.000 0.000 0.000 0.000 common.py:1717(is_extension_type)
16 0.000 0.000 0.000 0.000 common.py:1731(is_categorical)
70 0.000 0.000 0.001 0.000 common.py:1736(is_categorical_dtype)
1008 0.002 0.000 0.009 0.000 common.py:1745(is_object_dtype)
5019 0.005 0.000 0.008 0.000 common.py:1763(is_list_like)
4 0.000 0.000 0.000 0.000 common.py:1788(is_hashable)
1002 0.001 0.000 0.001 0.000 common.py:1846(_apply_if_callable)
5 0.000 0.000 0.000 0.000 common.py:272(array_equivalent)
2008 0.002 0.000 0.021 0.000 common.py:379(_coerce_indexer_dtype)
2 0.000 0.000 0.000 0.000 common.py:446(_infer_dtype_from_scalar)
8 0.000 0.000 0.001 0.000 common.py:527(_maybe_promote)
5 0.000 0.000 0.000 0.000 common.py:73(isnull)
5 0.000 0.000 0.000 0.000 common.py:94(_isnull_new)
2 0.000 0.000 0.001 0.000 common.py:998(_possibly_convert_platform)
2 0.000 0.000 0.000 0.000 decorators.py:65(wrapper)
27 0.000 0.000 0.000 0.000 dtypes.py:122(construct_from_string)
9 0.000 0.000 0.000 0.000 dtypes.py:159(init)
9 0.000 0.000 0.000 0.000 dtypes.py:191(construct_from_string)
134 0.000 0.000 0.001 0.000 dtypes.py:74(is_dtype)
4 0.000 0.000 0.002 0.000 frame.py:1973(getitem)
503 0.000 0.000 0.000 0.000 frame.py:199(_constructor)
4 0.000 0.000 0.001 0.000 frame.py:1999(_getitem_column)
505 0.004 0.000 0.011 0.000 frame.py:210(init)
4 0.000 0.000 0.001 0.000 frame.py:2331(_box_item_values)
4 0.000 0.000 0.001 0.000 frame.py:2338(_box_col_values)
1 0.000 0.000 0.001 0.001 frame.py:2675(_reindex_axes)
1 0.000 0.000 0.001 0.001 frame.py:2700(_reindex_columns)
1 0.000 0.000 0.001 0.001 frame.py:2738(reindex)
1 0.000 0.000 2.401 2.401 frame.py:2769(set_index)
2 0.000 0.000 0.003 0.001 frame.py:307(_init_dict)
1 0.022 0.022 5.554 5.554 frame.py:3227(sort_index)
1 0.000 0.000 0.000 0.000 frame.py:434(axes)
2 0.000 0.000 0.002 0.001 frame.py:5224(_arrays_to_mgr)
2 0.000 0.000 0.000 0.000 frame.py:5244(extract_index)
2 0.000 0.000 0.001 0.001 frame.py:5521(_homogenize)
2 0.000 0.000 0.000 0.000 frame.py:726(len)
1 0.000 0.000 0.000 0.000 frequencies.py:1017(mdiffs)
1 0.000 0.000 0.000 0.000 frequencies.py:1022(ydiffs)
1 0.000 0.000 0.000 0.000 frequencies.py:1026(_infer_daily_rule)
1 0.000 0.000 0.000 0.000 frequencies.py:1062(_get_annual_rule)
1 0.000 0.000 0.000 0.000 frequencies.py:1073(_get_quarterly_rule)
1 0.000 0.000 0.000 0.000 frequencies.py:1084(_get_monthly_rule)
1 0.000 0.000 0.000 0.000 frequencies.py:1127(_maybe_add_count)
1 0.000 0.000 0.000 0.000 frequencies.py:1300(_is_multiple)
2 0.000 0.000 0.000 0.000 frequencies.py:420(to_offset)
1 0.000 0.000 0.000 0.000 frequencies.py:826(infer_freq)
1 0.000 0.000 0.000 0.000 frequencies.py:890(init)
1 0.000 0.000 0.000 0.000 frequencies.py:908(deltas)
1 0.000 0.000 0.000 0.000 frequencies.py:916(is_unique)
1 0.000 0.000 0.000 0.000 frequencies.py:924(get_freq)
1 0.000 0.000 0.000 0.000 frequencies.py:968(fields)
2 0.000 0.000 0.000 0.000 fromnumeric.py:2395(prod)
1 0.000 0.000 0.000 0.000 fromnumeric.py:829(argsort)
500 0.002 0.000 0.019 0.000 function.py:36(call)
3 0.107 0.036 0.107 0.036 function_base.py:4110(delete)
503 0.001 0.000 0.001 0.000 generic.py:124(_init_mgr)
998 0.001 0.000 0.002 0.000 generic.py:1312(_indexer)
4 0.000 0.000 0.001 0.000 generic.py:1345(_get_item_cache)
4 0.000 0.000 0.000 0.000 generic.py:1359(_set_as_cached)
499 0.001 0.000 0.003 0.000 generic.py:1402(_is_view)
500 0.001 0.000 0.001 0.000 generic.py:1441(_clear_item_cache)
499 0.006 0.000 0.167 0.000 generic.py:1447(_slice)
998 0.003 0.000 0.005 0.000 generic.py:1467(_set_is_copy)
2 0.000 0.000 0.108 0.054 generic.py:1580(delitem)
499 0.014 0.000 2.877 0.006 generic.py:1643(xs)
1 0.000 0.000 0.001 0.001 generic.py:1846(drop)
1 0.000 0.000 0.001 0.001 generic.py:2194(reindex)
1 0.000 0.000 0.000 0.000 generic.py:2251(_needs_reindex_multi)
1 0.000 0.000 0.000 0.000 generic.py:2320(_reindex_with_indexers)
1 0.000 0.000 0.000 0.000 generic.py:260(_construct_axes_from_arguments)
504 0.001 0.000 0.001 0.000 generic.py:2641(finalize)
4 0.000 0.000 0.000 0.000 generic.py:2658(getattr)
2012 0.007 0.000 0.016 0.000 generic.py:2674(setattr)
500 0.002 0.000 0.010 0.000 generic.py:2713(_protect_consolidate)
500 0.002 0.000 0.012 0.000 generic.py:2723(_consolidate_inplace)
500 0.003 0.000 0.008 0.000 generic.py:2726(f)
1 0.000 0.000 0.877 0.877 generic.py:2953(copy)
1002 0.004 0.000 0.005 0.000 generic.py:307(_get_axis_number)
2499 0.005 0.000 0.006 0.000 generic.py:320(_get_axis_name)
2498 0.004 0.000 0.014 0.000 generic.py:333(_get_axis)
501 0.001 0.000 0.003 0.000 generic.py:337(_get_block_manager_axis)
2 0.000 0.000 0.000 0.000 generic.py:381(_info_axis)
2 0.000 0.000 0.000 0.000 generic.py:401(ndim)
500 0.002 0.000 0.009 0.000 generic.py:427(_set_axis)
3151 0.003 0.000 0.007 0.000 generic.py:7(_check)
2 0.000 0.000 0.000 0.000 generic.py:844(contains)
509 0.002 0.000 0.002 0.000 generic.py:94(init)
1 0.115 0.115 0.339 0.339 groupby.py:3978(get_group_index)
1 0.000 0.000 0.000 0.000 groupby.py:4005(_int64_cut_off)
1 0.218 0.218 0.218 0.218 groupby.py:4013(loop)
2 0.005 0.003 0.006 0.003 groupby.py:4043(maybe_lift)
1 0.000 0.000 0.000 0.000 groupby.py:4056(_int64_overflow_possible)
1 0.004 0.004 1.720 1.720 groupby.py:4110(_indexer_from_factorized)
1 0.010 0.010 2.549 2.549 groupby.py:4122(_lexsort_indexer)
1 0.000 0.000 0.030 0.030 groupby.py:4244(_get_group_index_sorter)
1 0.001 0.001 1.348 1.348 groupby.py:4269(_compress_group_index)
1 0.004 0.004 0.237 0.237 groupby.py:4290(_reorder_by_uniques)
998 0.035 0.000 0.102 0.000 index.py:1406(get_loc)
998 0.004 0.000 0.024 0.000 index.py:1477(_get_string_slice)
1999 0.001 0.000 0.001 0.000 index.py:1538(_get_freq)
1 0.000 0.000 0.000 0.000 index.py:1657(inferred_type)
1 0.000 0.000 0.000 0.000 index.py:1663(dtype)
2 0.000 0.000 0.000 0.000 index.py:219(new)
1 0.000 0.000 0.000 0.000 index.py:545(_box_func)
499 0.003 0.000 0.003 0.000 index.py:547()
1003 0.009 0.000 0.028 0.000 index.py:570(_simple_new)
2 0.000 0.000 0.000 0.000 index_tricks.py:231(_retval)
2 0.000 0.000 0.000 0.000 index_tricks.py:251(getitem)
998/499 0.005 0.000 5.262 0.011 indexing.py:1286(getitem)
499 0.006 0.000 2.364 0.005 indexing.py:1355(_has_valid_type)
499 0.001 0.000 0.001 0.000 indexing.py:1407(_get_partial_string_timestamp_match_key)
499 0.006 0.000 5.259 0.011 indexing.py:1431(_getitem_axis)
499 0.001 0.000 0.003 0.000 indexing.py:1498(_has_valid_type)
499 0.003 0.000 0.183 0.000 indexing.py:1571(_get_slice_axis)
499 0.002 0.000 0.188 0.000 indexing.py:1583(_getitem_axis)
499 0.002 0.000 0.009 0.000 indexing.py:183(_convert_scalar_indexer)
499 0.003 0.000 0.012 0.000 indexing.py:189(_convert_slice_indexer)
998 0.001 0.000 0.002 0.000 indexing.py:1890(is_list_like_indexer)
499 0.001 0.000 0.001 0.000 indexing.py:1901(need_slice)
2 0.000 0.000 0.000 0.000 indexing.py:50(init)
499 0.004 0.000 2.882 0.006 indexing.py:80(_get_label)
499 0.001 0.000 0.168 0.000 indexing.py:98(_slice)
499 0.001 0.000 0.001 0.000 internals.py:100(is_view)
4 0.000 0.000 0.000 0.000 internals.py:129(internal_values)
3 0.000 0.000 0.000 0.000 internals.py:135(get_values)
2 0.000 0.000 0.000 0.000 internals.py:156(fill_value)
1555 0.001 0.000 0.001 0.000 internals.py:160(mgr_locs)
4 0.000 0.000 0.000 0.000 internals.py:1657(init)
1 0.000 0.000 0.000 0.000 internals.py:1665(is_bool)
507 0.002 0.000 0.008 0.000 internals.py:183(make_block_same_class)
517 0.001 0.000 0.001 0.000 internals.py:191(mgr_locs)
499 0.001 0.000 0.001 0.000 internals.py:225(_slice)
499 0.006 0.000 0.016 0.000 internals.py:244(getitem_block)
514 0.002 0.000 0.006 0.000 internals.py:2482(make_block)
505 0.004 0.000 0.053 0.000 internals.py:2578(init)
1027 0.004 0.000 0.012 0.000 internals.py:2619(shape)
3081 0.001 0.000 0.008 0.000 internals.py:2621()
1016 0.001 0.000 0.001 0.000 internals.py:2623(ndim)
500 0.002 0.000 0.007 0.000 internals.py:2627(set_axis)
8 0.000 0.000 0.000 0.000 internals.py:264(shape)
3 0.000 0.000 0.000 0.000 internals.py:2662(_is_single_block)
508 0.015 0.000 0.041 0.000 internals.py:2674(_rebuild_blknos_and_blklocs)
21 0.000 0.000 0.000 0.000 internals.py:2695(_get_items)
520 0.000 0.000 0.000 0.000 internals.py:272(dtype)
509 0.003 0.000 0.004 0.000 internals.py:276(ftype)
2 0.000 0.000 0.000 0.000 internals.py:2784(len)
5 0.000 0.000 0.000 0.000 internals.py:2799(_verify_integrity)
13 0.000 0.000 0.000 0.000 internals.py:2801()
1 0.000 0.000 0.877 0.877 internals.py:2811(apply)
1 0.000 0.000 0.000 0.000 internals.py:2871()
1006 0.001 0.000 0.001 0.000 internals.py:2996(is_consolidated)
505 0.003 0.000 0.006 0.000 internals.py:3004(_consolidate_check)
4 0.000 0.000 0.000 0.000 internals.py:301(iget)
499 0.001 0.000 0.002 0.000 internals.py:3027(is_view)
499 0.009 0.000 0.145 0.000 internals.py:3084(get_slice)
1 0.000 0.000 0.877 0.877 internals.py:3111(copy)
2 0.000 0.000 0.000 0.000 internals.py:3131()
1 0.000 0.000 0.107 0.107 internals.py:314(delete)
500 0.001 0.000 0.002 0.000 internals.py:3260(consolidate)
506 0.004 0.000 0.498 0.001 internals.py:3276(_consolidate_inplace)
4 0.000 0.000 0.000 0.000 internals.py:3283(get)
4 0.000 0.000 0.000 0.000 internals.py:3312(iget)
2 0.000 0.000 0.108 0.054 internals.py:3345(delete)
4 0.000 0.000 0.000 0.000 internals.py:3378()
2 0.000 0.000 0.012 0.006 internals.py:3560(reindex_indexer)
1 0.000 0.000 0.000 0.000 internals.py:3603(_slice_take_blocks_ax0)
1 0.000 0.000 0.030 0.030 internals.py:3690(take)
4 0.000 0.000 0.000 0.000 internals.py:3778(init)
4 0.000 0.000 0.000 0.000 internals.py:3824(_block)
4 0.000 0.000 0.000 0.000 internals.py:3911(internal_values)
2 0.000 0.000 0.001 0.001 internals.py:3996(create_block_manager_from_arrays)
2 0.000 0.000 0.001 0.000 internals.py:4007(form_blocks)
1 0.000 0.000 0.000 0.000 internals.py:4122(_simple_blockify)
2 0.000 0.000 0.000 0.000 internals.py:4136(_multi_blockify)
3 0.000 0.000 0.000 0.000 internals.py:4140()
3 0.000 0.000 0.000 0.000 internals.py:4168(_stack_arrays)
4 0.000 0.000 0.000 0.000 internals.py:4171(_asarray_compat)
3 0.000 0.000 0.000 0.000 internals.py:4177(_shape_compat)
1 0.000 0.000 0.493 0.493 internals.py:4257(_consolidate)
6 0.000 0.000 0.000 0.000 internals.py:4263()
2 0.250 0.125 0.493 0.247 internals.py:4274(_merge_blocks)
4 0.000 0.000 0.000 0.000 internals.py:4301(_extend_blocks)
1 0.000 0.000 0.243 0.243 internals.py:4327(_vstack)
5 0.000 0.000 0.000 0.000 internals.py:4409(_get_blkno_placements)
1 0.000 0.000 0.000 0.000 internals.py:4432(items_overlap_with_suffix)
1 0.000 0.000 0.372 0.372 internals.py:4526(concatenate_block_managers)
3 0.000 0.000 0.012 0.004 internals.py:4550(get_empty_dtype_and_na)
3 0.000 0.000 0.372 0.124 internals.py:4630(concatenate_join_units)
2 0.000 0.000 0.000 0.000 internals.py:4655(get_mgr_concatenation_plan)
4 0.000 0.000 0.000 0.000 internals.py:4734(combine_concat_plans)
3 0.000 0.000 0.000 0.000 internals.py:4827(init)
3 0.011 0.004 0.011 0.004 internals.py:4839(needs_filling)
3 0.000 0.000 0.011 0.004 internals.py:4848(dtype)
3 0.000 0.000 0.000 0.000 internals.py:4861(is_null)
3 0.000 0.000 0.360 0.120 internals.py:4890(get_reindexed_values)
2 0.000 0.000 0.000 0.000 internals.py:4947(_fast_count_smallints)
1 0.000 0.000 0.000 0.000 internals.py:4958(_preprocess_slice_or_indexer)
2 0.000 0.000 0.379 0.190 internals.py:581(copy)
514 0.002 0.000 0.004 0.000 internals.py:77(init)
6 0.000 0.000 0.000 0.000 internals.py:92(_consolidate_key)
2 0.000 0.000 0.011 0.006 internals.py:975(take_nd)
1 0.000 0.000 0.000 0.000 merge.py:1252(_should_fill)
2 0.000 0.000 0.000 0.000 merge.py:1259(_any)
1 0.000 0.000 0.002 0.002 merge.py:161(init)
1 0.000 0.000 0.929 0.929 merge.py:212(get_result)
1 0.003 0.003 0.003 0.003 merge.py:282(_maybe_add_join_keys)
1 0.003 0.003 0.933 0.933 merge.py:30(merge)
1 0.000 0.000 0.553 0.553 merge.py:333(_get_join_info)
1 0.000 0.000 0.002 0.002 merge.py:393(_get_merge_keys)
1 0.000 0.000 0.000 0.000 merge.py:416()
1 0.000 0.000 0.000 0.000 merge.py:418()
1 0.000 0.000 0.000 0.000 merge.py:482(_validate_specification)
1 0.000 0.000 0.458 0.458 merge.py:527(_get_join_indexers)
2 0.000 0.000 0.000 0.000 merge.py:698(_factorize_keys)
1 0.000 0.000 0.000 0.000 merge.py:757(_get_join_keys)
1 0.000 0.000 0.000 0.000 merge.py:761()
3 0.000 0.000 0.000 0.000 missing.py:559(clean_reindex_fill_method)
3 0.000 0.000 0.000 0.000 missing.py:61(clean_fill_method)
1 0.000 0.000 0.019 0.019 multi.py:1010(take)
1 0.000 0.000 0.018 0.018 multi.py:1022(_assert_take_fillable)
499 0.033 0.000 0.111 0.000 multi.py:1155(droplevel)
998 0.001 0.000 0.009 0.000 multi.py:1180()
14495 0.004 0.000 0.004 0.000 multi.py:131(_get_levels)
1001 0.008 0.000 0.086 0.000 multi.py:134(_set_levels)
3003 0.005 0.000 0.071 0.000 multi.py:148()
499 0.004 0.000 2.342 0.005 multi.py:1515(get_loc)
499 0.003 0.000 0.005 0.000 multi.py:1534(_maybe_to_slice)
499 0.009 0.000 2.633 0.005 multi.py:1601(get_loc_level)
499 0.008 0.000 0.274 0.001 multi.py:1615(maybe_droplevels)
998 0.029 0.000 4.658 0.005 multi.py:1734(_get_level_indexer)
4503 0.002 0.000 0.002 0.000 multi.py:240(_get_labels)
1001 0.008 0.000 0.030 0.000 multi.py:243(_set_labels)
3003 0.005 0.000 0.019 0.000 multi.py:253()
2002 0.003 0.000 0.009 0.000 multi.py:433(len)
5493 0.028 0.000 0.035 0.000 multi.py:436(_get_names)
14477 0.005 0.000 0.005 0.000 multi.py:437()
1001 0.010 0.000 0.034 0.000 multi.py:439(_set_names)
1497 0.016 0.000 0.046 0.000 multi.py:510(_get_level_number)
1 0.000 0.000 1.315 1.315 multi.py:535(values)
1001 0.009 0.000 0.160 0.000 multi.py:69(new)
1 0.000 0.000 0.009 0.009 multi.py:781(is_lexsorted)
2 0.000 0.000 0.023 0.011 multi.py:793(lexsort_depth)
2 0.000 0.000 2.968 1.484 multi.py:808(from_arrays)
1 0.000 0.000 1.628 1.628 multi.py:852(from_tuples)
3502 0.003 0.000 0.004 0.000 multi.py:941(nlevels)
499 0.002 0.000 2.345 0.005 multi.py:949(contains)
998 0.021 0.000 0.206 0.000 multi.py:986(getitem)
2 0.000 0.000 0.000 0.000 numeric.py:121(asi8)
4 0.000 0.000 0.000 0.000 numeric.py:126(is_all_dates)
3 0.000 0.000 0.000 0.000 numeric.py:148(ones)
53 0.000 0.000 0.000 0.000 numeric.py:414(asarray)
4 0.000 0.000 0.000 0.000 numeric.py:484(asanyarray)
5 0.000 0.000 0.000 0.000 numeric.py:607(require)
10 0.000 0.000 0.000 0.000 numeric.py:676()
5 0.000 0.000 0.000 0.000 numeric.py:93(new)
4 0.000 0.000 0.000 0.000 numerictypes.py:942(_can_coerce_all)
2 0.000 0.000 0.000 0.000 numerictypes.py:964(find_common_type)
2 0.000 0.000 0.000 0.000 range.py:117(_simple_new)
2 0.000 0.000 0.000 0.000 range.py:139(_validate_dtype)
2 0.000 0.000 0.000 0.000 range.py:42(new)
18 0.000 0.000 0.000 0.000 range.py:435(len)
4 0.000 0.000 0.000 0.000 range.py:58(_ensure_int)
4 0.000 0.000 0.000 0.000 series.py:120(init)
4 0.000 0.000 0.000 0.000 series.py:236(from_array)
4 0.000 0.000 0.000 0.000 series.py:270(_set_axis)
4 0.000 0.000 0.001 0.000 series.py:2787(_sanitize_array)
2 0.000 0.000 0.000 0.000 series.py:2804(_try_cast)
2 0.000 0.000 0.000 0.000 series.py:2875(create_from_value)
4 0.000 0.000 0.000 0.000 series.py:292(_set_subtyp)
4 0.000 0.000 0.000 0.000 series.py:302(name)
4 0.000 0.000 0.000 0.000 series.py:306(name)
4 0.000 0.000 0.000 0.000 series.py:366(_values)
1 0.000 0.000 0.243 0.243 shape_base.py:180(vstack)
2 0.000 0.000 0.000 0.000 shape_base.py:61(atleast_2d)
1 0.000 0.000 0.000 0.000 six.py:180(find_module)
3 0.000 0.000 0.000 0.000 six.py:184(find_module)
1 0.023 0.023 14.176 14.176 testDatesPerformance.py:6(testPerformance)
998 0.013 0.000 0.014 0.000 tools.py:603(parse_time_string)
500 0.006 0.000 0.007 0.000 validators.py:104(_check_for_invalid_keys)
500 0.002 0.000 0.017 0.000 validators.py:120(validate_kwargs)
500 0.007 0.000 0.007 0.000 validators.py:29(_check_for_default_values)
1 0.000 0.000 0.000 0.000 {all}
1004 0.001 0.000 0.001 0.000 {any}
3523 0.002 0.000 0.002 0.000 {built-in method new of type object at 0x7f63038a7f20}
1002 0.000 0.000 0.000 0.000 {callable}
6001 0.002 0.000 0.002 0.000 {function getitem at 0x7f62f7ed9230}
16175/16172 0.017 0.000 0.020 0.000 {getattr}
6711 0.003 0.000 0.003 0.000 {hasattr}
509 0.001 0.000 0.001 0.000 {hash}
50016 0.025 0.000 0.032 0.000 {isinstance}
2230 0.001 0.000 0.001 0.000 {issubclass}
27470/21885 0.010 0.000 0.021 0.000 {len}
21 0.000 0.000 0.000 0.000 {max}
5 0.000 0.000 0.000 0.000 {method 'add' of 'pandas.lib.BlockPlacement' objects}
7 0.000 0.000 0.000 0.000 {method 'all' of 'numpy.ndarray' objects}
1025 0.002 0.000 0.025 0.000 {method 'any' of 'numpy.ndarray' objects}
49 0.000 0.000 0.000 0.000 {method 'append' of 'list' objects}
8 0.055 0.007 0.055 0.007 {method 'argsort' of 'numpy.ndarray' objects}
12 0.000 0.000 0.000 0.000 {method 'astype' of 'numpy.ndarray' objects}
500 0.000 0.000 0.000 0.000 {method 'clear' of 'dict' objects}
1 0.000 0.000 0.000 0.000 {method 'clear_mapping' of 'pandas.index.IndexEngine' objects}
502 0.000 0.000 0.000 0.000 {method 'copy' of 'dict' objects}
4 0.381 0.095 0.381 0.095 {method 'copy' of 'numpy.ndarray' objects}
1497 0.002 0.000 0.002 0.000 {method 'count' of 'list' objects}
2 0.000 0.000 0.000 0.000 {method 'cumsum' of 'numpy.ndarray' objects}
1 0.000 0.000 0.000 0.000 {method 'delete' of 'pandas.lib.BlockPlacement' objects}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
3 0.000 0.000 0.000 0.000 {method 'extend' of 'list' objects}
4 0.000 0.000 0.000 0.000 {method 'factorize' of 'pandas.hashtable.Int64Factorizer' objects}
1018 0.002 0.000 0.002 0.000 {method 'fill' of 'numpy.ndarray' objects}
3519 0.001 0.000 0.001 0.000 {method 'get' of 'dict' objects}
2 0.000 0.000 0.000 0.000 {method 'get_count' of 'pandas.hashtable.Int64Factorizer' objects}
2 0.000 0.000 0.000 0.000 {method 'get_indexer' of 'pandas.index.IndexEngine' objects}
5 1.934 0.387 1.934 0.387 {method 'get_labels' of 'pandas.hashtable.Int64HashTable' objects}
1 0.264 0.264 0.264 0.264 {method 'get_labels' of 'pandas.hashtable.PyObjectHashTable' objects}
1 1.110 1.110 1.110 1.110 {method 'get_labels_groupby' of 'pandas.hashtable.Int64HashTable' objects}
2994 0.023 0.000 0.023 0.000 {method 'get_loc' of 'pandas.index.DatetimeEngine' objects}
11 0.000 0.000 0.000 0.000 {method 'get_loc' of 'pandas.index.IndexEngine' objects}
1497 0.006 0.000 0.006 0.000 {method 'index' of 'list' objects}
509 0.000 0.000 0.000 0.000 {method 'items' of 'dict' objects}
1519 0.001 0.000 0.001 0.000 {method 'iteritems' of 'dict' objects}
3 0.000 0.000 0.000 0.000 {method 'keys' of 'dict' objects}
6 0.000 0.000 0.000 0.000 {method 'nonzero' of 'numpy.ndarray' objects}
1 0.000 0.000 0.000 0.000 {method 'partition' of 'str' objects}
16 0.000 0.000 0.000 0.000 {method 'pop' of 'dict' objects}
1497 0.001 0.000 0.001 0.000 {method 'pop' of 'list' objects}
7 0.039 0.006 0.039 0.006 {method 'put' of 'numpy.ndarray' objects}
7 0.000 0.000 0.000 0.000 {method 'ravel' of 'numpy.ndarray' objects}
1036 0.021 0.000 0.021 0.000 {method 'reduce' of 'numpy.ufunc' objects}
3 0.000 0.000 0.000 0.000 {method 'reshape' of 'numpy.ndarray' objects}
9 0.000 0.000 0.000 0.000 {method 'search' of '_sre.SRE_Pattern' objects}
1996 4.507 0.002 4.507 0.002 {method 'searchsorted' of 'numpy.ndarray' objects}
2 0.000 0.000 0.000 0.000 {method 'startswith' of 'str' objects}
513 0.733 0.001 0.733 0.001 {method 'take' of 'numpy.ndarray' objects}
5 0.000 0.000 0.000 0.000 {method 'to_array' of 'pandas.hashtable.Int64Vector' objects}
1 0.000 0.000 0.000 0.000 {method 'to_array' of 'pandas.hashtable.ObjectVector' objects}
4 0.000 0.000 0.000 0.000 {method 'transpose' of 'numpy.ndarray' objects}
2507 0.001 0.000 0.001 0.000 {method 'update' of 'dict' objects}
5 0.000 0.000 0.000 0.000 {method 'upper' of 'str' objects}
4 0.000 0.000 0.000 0.000 {method 'values' of 'dict' objects}
6560 0.006 0.000 0.006 0.000 {method 'view' of 'numpy.ndarray' objects}
1009 0.001 0.000 0.001 0.000 {min}
1 0.000 0.000 0.000 0.000 {next}
523 0.115 0.000 0.115 0.000 {numpy.core.multiarray.arange}
1090 0.001 0.000 0.001 0.000 {numpy.core.multiarray.array}
2 0.000 0.000 0.000 0.000 {numpy.core.multiarray.bincount}
3 0.000 0.000 0.000 0.000 {numpy.core.multiarray.can_cast}
5 0.243 0.049 0.243 0.049 {numpy.core.multiarray.concatenate}
3 0.000 0.000 0.000 0.000 {numpy.core.multiarray.copyto}
1043 0.121 0.000 0.121 0.000 {numpy.core.multiarray.empty}
7 0.012 0.002 0.012 0.002 {numpy.core.multiarray.putmask}
2 0.006 0.003 0.006 0.003 {numpy.core.multiarray.where}
2 0.000 0.000 0.000 0.000 {numpy.core.multiarray.zeros}
2008 0.015 0.000 0.015 0.000 {pandas.algos.ensure_int16}
38 0.028 0.001 0.028 0.001 {pandas.algos.ensure_int64}
5 0.000 0.000 0.000 0.000 {pandas.algos.ensure_object}
509 0.007 0.000 0.007 0.000 {pandas.algos.ensure_platform_int}
1 0.030 0.030 0.030 0.030 {pandas.algos.groupsort_indexer}
1 0.000 0.000 0.000 0.000 {pandas.algos.inner_join_indexer_object}
1 0.457 0.457 0.457 0.457 {pandas.algos.inner_join}
5 0.126 0.025 0.126 0.025 {pandas.algos.take_1d_int64_int64}
1 0.013 0.013 0.013 0.013 {pandas.algos.take_1d_object_object}
1 0.000 0.000 0.000 0.000 {pandas.algos.take_2d_axis0_int64_int64}
3 0.239 0.080 0.239 0.080 {pandas.algos.take_2d_axis1_int64_int64}
1 0.014 0.014 0.014 0.014 {pandas.algos.take_2d_axis1_object_object}
2 0.000 0.000 0.000 0.000 {pandas.lib.array_equivalent_object}
4 0.000 0.000 0.000 0.000 {pandas.lib.checknull}
1 1.278 1.278 1.278 1.278 {pandas.lib.fast_zip}
2 0.000 0.000 0.000 0.000 {pandas.lib.get_blkno_indexers}
19 0.000 0.000 0.000 0.000 {pandas.lib.infer_dtype}
1 0.000 0.000 0.000 0.000 {pandas.lib.is_bool_array}
11 0.000 0.000 0.000 0.000 {pandas.lib.is_bool}
1 0.000 0.000 0.000 0.000 {pandas.lib.is_complex}
1006 0.000 0.000 0.000 0.000 {pandas.lib.is_float}
2007 0.001 0.000 0.001 0.000 {pandas.lib.is_integer}
3 0.006 0.002 0.006 0.002 {pandas.lib.is_lexsorted}
1 0.000 0.000 0.000 0.000 {pandas.lib.is_timedelta_array}
1 0.000 0.000 0.000 0.000 {pandas.lib.isnullobj}
1516 0.008 0.000 0.008 0.000 {pandas.lib.isscalar}
4 0.000 0.000 0.000 0.000 {pandas.lib.list_to_object_array}
1 0.000 0.000 0.003 0.003 {pandas.lib.map_infer}
2 0.001 0.000 0.001 0.000 {pandas.lib.maybe_convert_objects}
1 0.073 0.073 0.073 0.073 {pandas.lib.tuples_to_object_array}
2023 0.004 0.000 0.004 0.000 {pandas.lib.values_from_object}
2 0.801 0.400 0.801 0.400 {pandas.tslib.array_to_datetime}
1 0.000 0.000 0.000 0.000 {pandas.tslib.build_field_sarray}
1 0.000 0.000 0.000 0.000 {pandas.tslib.is_timestamp_array}
1003 0.002 0.000 0.002 0.000 {pandas.tslib.maybe_get_tz}
3 0.000 0.000 0.000 0.000 {pandas.tslib.unique_deltas}
8 0.000 0.000 0.000 0.000 {range}
2 0.000 0.000 0.000 0.000 {setattr}
1002 0.004 0.000 0.013 0.000 {sorted}
6 0.000 0.000 0.000 0.000 {sum}
2 0.000 0.000 0.000 0.000 {time.time}
Process finished with exit code 0
Output from 0.12
/opt/epd/7.3-2_pandas0.12/bin/python2.7 /home/gamantini/QA/avoitenok/pandas_migration/testDatesPerformance.py
500 0.138274908066
91488 function calls (90977 primitive calls) in 2.079 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 2.079 2.079 :1()
4 0.000 0.000 0.000 0.000 _methods.py:20(_prod)
11 0.000 0.000 0.011 0.001 _methods.py:24(_any)
1 0.000 0.000 0.000 0.000 _methods.py:28(_all)
2 0.008 0.004 0.309 0.154 algorithms.py:105(factorize)
2 0.000 0.000 0.000 0.000 algorithms.py:298(_get_data_algo)
1 0.000 0.000 0.000 0.000 arraysetops.py:281(in1d)
1 0.000 0.000 0.000 0.000 arraysetops.py:388(setdiff1d)
2 0.000 0.000 0.000 0.000 arraysetops.py:90(unique)
1000 0.000 0.000 0.000 0.000 base.py:45(_constructor)
2 0.000 0.000 0.000 0.000 categorical.py:111(_set_levels)
2 0.000 0.000 0.000 0.000 categorical.py:119(_get_levels)
2 0.000 0.000 0.000 0.000 categorical.py:71(init)
2 0.001 0.000 0.310 0.155 categorical.py:87(from_array)
2 0.000 0.000 0.001 0.000 common.py:1138(_possibly_convert_platform)
4 0.000 0.000 0.000 0.000 common.py:1167(_possibly_cast_to_datetime)
1504 0.001 0.000 0.003 0.000 common.py:1232(_is_bool_indexer)
2 0.000 0.000 0.000 0.000 common.py:1292(_try_sort)
3 0.000 0.000 0.000 0.000 common.py:1369(split_ranges)
16 0.000 0.000 0.000 0.000 common.py:1468(_asarray_tuplesafe)
1 0.000 0.000 0.000 0.000 common.py:1496(_index_labels_to_array)
3 0.000 0.000 0.000 0.000 common.py:1511(_maybe_make_list)
2 0.000 0.000 0.000 0.000 common.py:1517(is_bool)
1502 0.001 0.000 0.001 0.000 common.py:1521(is_integer)
5 0.000 0.000 0.000 0.000 common.py:1525(is_float)
2 0.000 0.000 0.000 0.000 common.py:1542(is_integer_dtype)
4 0.000 0.000 0.000 0.000 common.py:1552(_is_int_or_datetime_dtype)
4 0.000 0.000 0.000 0.000 common.py:1561(is_datetime64_dtype)
2 0.000 0.000 0.000 0.000 common.py:1583(is_float_dtype)
4 0.000 0.000 0.000 0.000 common.py:1611(is_list_like)
8 0.000 0.000 0.000 0.000 common.py:431(_get_take_nd_function)
8 0.013 0.002 0.204 0.025 common.py:462(take_nd)
2 0.000 0.000 0.000 0.000 common.py:677(_infer_dtype_from_scalar)
5 0.000 0.000 0.000 0.000 common.py:728(_maybe_promote)
1 0.000 0.000 0.000 0.000 frame.py:1722(as_matrix)
504 0.001 0.000 0.039 0.000 frame.py:1986(getitem)
499 0.000 0.000 0.033 0.000 frame.py:2008(_getitem_slice)
499 0.002 0.000 0.033 0.000 frame.py:2063(_slice)
5 0.000 0.000 0.000 0.000 frame.py:2075(_box_item_values)
1501 0.004 0.000 0.007 0.000 frame.py:2090(setattr)
499 0.004 0.000 0.127 0.000 frame.py:2264(xs)
1 0.000 0.000 0.001 0.001 frame.py:2573(reindex)
1 0.000 0.000 0.000 0.000 frame.py:2709(_reindex_columns)
1 0.000 0.000 0.000 0.000 frame.py:2717(_reindex_with_indexers)
1 0.000 0.000 0.342 0.342 frame.py:2771(set_index)
1 0.000 0.000 0.053 0.053 frame.py:2963(take)
1 0.024 0.024 1.380 1.380 frame.py:3207(sort_index)
505 0.001 0.000 0.006 0.000 frame.py:386(init)
502 0.000 0.000 0.000 0.000 frame.py:466(_init_mgr)
2 0.000 0.000 0.003 0.001 frame.py:480(_init_dict)
1 0.000 0.000 0.000 0.000 frame.py:530(_init_ndarray)
2 0.000 0.000 0.002 0.001 frame.py:5663(_arrays_to_mgr)
2 0.000 0.000 0.000 0.000 frame.py:5682(extract_index)
1 0.000 0.000 0.000 0.000 frame.py:5734(_prep_ndarray)
1 0.000 0.000 0.000 0.000 frame.py:583(axes)
2 0.000 0.000 0.001 0.001 frame.py:5908(_homogenize)
1 0.000 0.000 0.000 0.000 frame.py:795(len)
2 0.000 0.000 0.000 0.000 frame.py:799(contains)
4 0.000 0.000 0.001 0.000 fromnumeric.py:2022(prod)
3 0.000 0.000 0.000 0.000 function_base.py:3384(delete)
499 0.001 0.000 0.002 0.000 function_base.py:35(iterable)
499 0.000 0.000 0.001 0.000 generic.py:102(_indexer)
1 0.000 0.000 0.001 0.001 generic.py:380(drop)
505 0.001 0.000 0.001 0.000 generic.py:605(init)
1 0.000 0.000 0.000 0.000 generic.py:651(ndim)
500 0.001 0.000 0.003 0.000 generic.py:655(_set_axis)
500 0.001 0.000 0.001 0.000 generic.py:66(_get_axis_number)
5 0.000 0.000 0.000 0.000 generic.py:662(_get_item_cache)
500 0.000 0.000 0.000 0.000 generic.py:675(_clear_item_cache)
2 0.000 0.000 0.001 0.000 generic.py:682(delitem)
1000 0.002 0.000 0.007 0.000 generic.py:750(_consolidate_inplace)
1000 0.001 0.000 0.002 0.000 generic.py:751()
1 0.000 0.000 0.000 0.000 generic.py:778(_is_mixed_type)
1001 0.001 0.000 0.002 0.000 generic.py:78(_get_axis_name)
1 0.000 0.000 0.000 0.000 generic.py:780()
1001 0.001 0.000 0.004 0.000 generic.py:788(_protect_consolidate)
1000 0.001 0.000 0.003 0.000 generic.py:90(_get_axis)
1 0.000 0.000 0.031 0.031 generic.py:950(copy)
3 0.036 0.012 0.041 0.014 groupby.py:2427(get_group_index)
1 0.000 0.000 0.000 0.000 groupby.py:2450(_int64_overflow_possible)
1 0.001 0.001 0.781 0.781 groupby.py:2473(_indexer_from_factorized)
1 0.016 0.016 1.302 1.302 groupby.py:2497(_lexsort_indexer)
1 0.000 0.000 0.658 0.658 groupby.py:2567(_compress_group_index)
1 0.004 0.004 0.337 0.337 groupby.py:2587(_reorder_by_uniques)
3 0.000 0.000 0.000 0.000 index.py:1261(delete)
1 0.000 0.000 0.000 0.000 index.py:1291(drop)
503 0.002 0.000 0.005 0.000 index.py:1341(new)
520 0.000 0.000 0.001 0.000 index.py:135(array_finalize)
5 0.000 0.000 0.000 0.000 index.py:1382(is_all_dates)
2 0.000 0.000 0.000 0.000 index.py:1430(new)
1000 0.001 0.000 0.001 0.000 index.py:1473(array_finalize)
502 0.000 0.000 0.000 0.000 index.py:1509(len)
1 0.000 0.000 0.000 0.000 index.py:1519(inferred_type)
1497 0.006 0.000 0.010 0.000 index.py:1533(_get_level_number)
1 0.000 0.000 0.007 0.007 index.py:1730(lexsort_depth)
1 0.000 0.000 0.310 0.310 index.py:1745(from_arrays)
1 0.000 0.000 0.000 0.000 index.py:180(_assert_can_do_setop)
1500 0.001 0.000 0.001 0.000 index.py:1808(nlevels)
998 0.008 0.000 0.019 0.000 index.py:1843(getitem)
1 0.000 0.000 0.037 0.037 index.py:1872(take)
6 0.000 0.000 0.000 0.000 index.py:189(dtype)
499 0.003 0.000 0.035 0.000 index.py:1957(droplevel)
998 0.001 0.000 0.004 0.000 index.py:1982()
1 0.000 0.000 0.000 0.000 index.py:199(_get_names)
1 0.000 0.000 0.000 0.000 index.py:202(_set_names)
499 0.002 0.000 0.072 0.000 index.py:2287(get_loc_level)
499 0.003 0.000 0.052 0.000 index.py:2299(_drop_levels)
36 0.000 0.000 0.000 0.000 index.py:236(values)
499 0.002 0.000 0.014 0.000 index.py:2385(_get_level_indexer)
2 0.000 0.000 0.000 0.000 index.py:240(is_monotonic)
9 0.000 0.000 0.000 0.000 index.py:247(is_unique)
1 0.000 0.000 0.000 0.000 index.py:266(_cleanup)
1546 0.001 0.000 0.002 0.000 index.py:2665(_ensure_index)
13 0.000 0.000 0.000 0.000 index.py:269(_engine)
14 0.000 0.000 0.000 0.000 index.py:272()
2 0.000 0.000 0.000 0.000 index.py:282(inferred_type)
4 0.000 0.000 0.000 0.000 index.py:293(iter)
24 0.000 0.000 0.000 0.000 index.py:318(contains)
8 0.000 0.000 0.000 0.000 index.py:332(getitem)
2 0.000 0.000 0.000 0.000 index.py:347(append)
2 0.000 0.000 0.000 0.000 index.py:378(_ensure_compat_concat)
500 0.003 0.000 0.025 0.000 index.py:390(take)
2 0.000 0.000 0.000 0.000 index.py:450(equals)
1 0.000 0.000 0.000 0.000 index.py:622(_wrap_union_result)
1 0.000 0.000 0.000 0.000 index.py:626(intersection)
513 0.001 0.000 0.001 0.000 index.py:708(get_loc)
3 0.000 0.000 0.000 0.000 index.py:770(get_indexer)
3 0.000 0.000 0.000 0.000 index.py:847(_possibly_promote)
19 0.000 0.000 0.001 0.000 index.py:86(new)
3 0.000 0.000 0.000 0.000 index.py:860(isin)
3 0.000 0.000 0.000 0.000 index.py:876(_array_values)
3 0.000 0.000 0.000 0.000 index.py:879(_get_method)
1 0.000 0.000 0.000 0.000 index.py:889(reindex)
499 0.001 0.000 0.002 0.000 indexing.py:1077(_is_list_like)
1 0.000 0.000 0.000 0.000 indexing.py:32(init)
499 0.001 0.000 0.128 0.000 indexing.py:51(_get_label)
499 0.001 0.000 0.136 0.000 indexing.py:695(getitem)
499 0.001 0.000 0.135 0.000 indexing.py:771(_getitem_axis)
504 0.002 0.000 0.005 0.000 indexing.py:910(_convert_to_index_sliceable)
499 0.001 0.000 0.003 0.000 indexing.py:938(_is_index_slice)
998 0.001 0.000 0.002 0.000 indexing.py:939(_is_valid_index)
998 0.001 0.000 0.002 0.000 indexing.py:943(_crit)
500 0.000 0.000 0.000 0.000 internals.py:1016(ndim)
9 0.000 0.000 0.000 0.000 internals.py:102(contains)
502 0.001 0.000 0.002 0.000 internals.py:1020(set_axis)
8 0.000 0.000 0.000 0.000 internals.py:105(len)
6 0.000 0.000 0.000 0.000 internals.py:1072(_set_ref_locs)
553 0.000 0.000 0.000 0.000 internals.py:1177(_get_items)
5 0.000 0.000 0.000 0.000 internals.py:1227(shape)
15 0.000 0.000 0.000 0.000 internals.py:1229()
5 0.000 0.000 0.000 0.000 internals.py:1231(_verify_integrity)
12 0.000 0.000 0.000 0.000 internals.py:1233()
513 0.000 0.000 0.000 0.000 internals.py:128(dtype)
2 0.000 0.000 0.031 0.016 internals.py:132(copy)
1505 0.001 0.000 0.001 0.000 internals.py:1350(is_consolidated)
506 0.002 0.000 0.002 0.000 internals.py:1358(_consolidate_check)
1 0.000 0.000 0.000 0.000 internals.py:1363(is_mixed_type)
499 0.002 0.000 0.024 0.000 internals.py:1431(get_slice)
499 0.004 0.000 0.007 0.000 internals.py:1459(_slice_blocks)
1 0.000 0.000 0.046 0.046 internals.py:147(reindex_axis)
1 0.000 0.000 0.031 0.031 internals.py:1487(copy)
1 0.000 0.000 0.000 0.000 internals.py:1505(as_matrix)
1000 0.001 0.000 0.001 0.000 internals.py:1626(consolidate)
503 0.000 0.000 0.001 0.000 internals.py:1640(_consolidate_inplace)
5 0.000 0.000 0.000 0.000 internals.py:1653(get)
2 0.000 0.000 0.001 0.000 internals.py:1704(delete)
5 0.000 0.000 0.000 0.000 internals.py:181(get)
2 0.000 0.000 0.000 0.000 internals.py:1816(set_items_norename)
2 0.000 0.000 0.000 0.000 internals.py:1823(_delete_from_all_blocks)
2 0.000 0.000 0.000 0.000 internals.py:1841(_delete_from_block)
7 0.000 0.000 0.000 0.000 internals.py:1934(_find_block)
7 0.000 0.000 0.000 0.000 internals.py:1940(_check_have)
1 0.000 0.000 0.000 0.000 internals.py:1971(reindex_indexer)
1 0.000 0.000 0.000 0.000 internals.py:1987(_reindex_indexer_items)
1 0.000 0.000 0.000 0.000 internals.py:2108(_maybe_rename_join)
1 0.000 0.000 0.000 0.000 internals.py:2219(create_block_manager_from_blocks)
2 0.000 0.000 0.001 0.000 internals.py:2236(create_block_manager_from_arrays)
2 0.000 0.000 0.001 0.000 internals.py:2254(form_blocks)
1 0.000 0.000 0.000 0.000 internals.py:2338(_simple_blockify)
2 0.000 0.000 0.000 0.000 internals.py:2351(_multi_blockify)
3 0.000 0.000 0.000 0.000 internals.py:2355()
3 0.000 0.000 0.000 0.000 internals.py:2368(_stack_arrays)
4 0.000 0.000 0.000 0.000 internals.py:2372(_asarray_compat)
3 0.000 0.000 0.000 0.000 internals.py:2379(_shape_compat)
4 0.000 0.000 0.000 0.000 internals.py:2531(_possibly_convert_to_indexer)
509 0.001 0.000 0.001 0.000 internals.py:37(init)
3 0.000 0.000 0.000 0.000 internals.py:688(init)
509 0.000 0.000 0.000 0.000 internals.py:76(set_ref_locs)
2 0.000 0.000 0.000 0.000 internals.py:83(set_ref_items)
509 0.001 0.000 0.017 0.000 internals.py:932(make_block)
505 0.002 0.000 0.005 0.000 internals.py:989(init)
2 0.000 0.000 0.000 0.000 merge.py:1195(_concat_indexes)
1 0.000 0.000 0.000 0.000 merge.py:1299(_should_fill)
2 0.000 0.000 0.000 0.000 merge.py:1305(_any)
1 0.000 0.000 0.001 0.001 merge.py:157(init)
1 0.000 0.000 0.197 0.197 merge.py:182(get_result)
1 0.004 0.004 0.017 0.017 merge.py:201(_maybe_add_join_keys)
1 0.000 0.000 0.083 0.083 merge.py:244(_get_join_info)
1 0.000 0.000 0.000 0.000 merge.py:274(_get_merge_data)
1 0.001 0.001 0.199 0.199 merge.py:28(merge)
1 0.000 0.000 0.001 0.001 merge.py:284(_get_merge_keys)
1 0.000 0.000 0.000 0.000 merge.py:307()
1 0.000 0.000 0.000 0.000 merge.py:308()
1 0.000 0.000 0.000 0.000 merge.py:371(_validate_specification)
1 0.000 0.000 0.077 0.077 merge.py:420(_get_join_indexers)
2 0.000 0.000 0.000 0.000 merge.py:578(_factorize_keys)
1 0.000 0.000 0.000 0.000 merge.py:641(init)
1 0.000 0.000 0.014 0.014 merge.py:664(_prepare_blocks)
1 0.000 0.000 0.098 0.098 merge.py:676(get_result)
6 0.000 0.000 0.000 0.000 merge.py:692()
2 0.000 0.000 0.083 0.042 merge.py:698(_get_merged_block)
1 0.000 0.000 0.037 0.037 merge.py:706(_merge_blocks)
3 0.000 0.000 0.000 0.000 merge.py:717()
2 0.000 0.000 0.000 0.000 merge.py:740(init)
2 0.009 0.005 0.014 0.007 merge.py:744(mask_info)
2 0.000 0.000 0.014 0.007 merge.py:753(get_upcasted_blocks)
1 0.000 0.000 0.046 0.046 merge.py:759(reindex_block)
2 0.000 0.000 0.000 0.000 merge.py:769(_may_need_upcasting)
1 0.000 0.000 0.000 0.000 merge.py:803(_get_merge_block_kinds)
1 0.000 0.000 0.000 0.000 merge.py:810(_get_block_dtype)
1507 0.002 0.000 0.003 0.000 numeric.py:1666(isscalar)
2 0.000 0.000 0.000 0.000 numeric.py:2080(array_equal)
75 0.000 0.000 0.000 0.000 numeric.py:252(asarray)
4 0.000 0.000 0.000 0.000 series.py:1297(values)
4 0.000 0.000 0.001 0.000 series.py:3299(_sanitize_array)
2 0.000 0.000 0.000 0.000 series.py:3310(_try_cast)
5 0.000 0.000 0.000 0.000 series.py:501(from_array)
5 0.000 0.000 0.000 0.000 series.py:532(array_finalize)
1 0.018 0.018 2.079 2.079 testDatesPerformance.py:6(testPerformance)
4 0.000 0.000 0.000 0.000 {any}
2517 0.001 0.000 0.001 0.000 {getattr}
11 0.000 0.000 0.000 0.000 {hasattr}
24 0.000 0.000 0.000 0.000 {hash}
19344 0.006 0.000 0.006 0.000 {isinstance}
1159 0.000 0.000 0.000 0.000 {issubclass}
503 0.000 0.000 0.000 0.000 {iter}
8704/8193 0.002 0.000 0.002 0.000 {len}
2 0.000 0.000 0.000 0.000 {max}
1 0.000 0.000 0.000 0.000 {method 'all' of 'numpy.ndarray' objects}
11 0.000 0.000 0.011 0.001 {method 'any' of 'numpy.ndarray' objects}
539 0.000 0.000 0.000 0.000 {method 'append' of 'list' objects}
4 0.148 0.037 0.148 0.037 {method 'argsort' of 'numpy.ndarray' objects}
2 0.064 0.032 0.064 0.032 {method 'astype' of 'numpy.ndarray' objects}
500 0.000 0.000 0.000 0.000 {method 'clear' of 'dict' objects}
1 0.000 0.000 0.000 0.000 {method 'clear_mapping' of 'pandas.index.IndexEngine' objects}
3 0.031 0.010 0.031 0.010 {method 'copy' of 'numpy.ndarray' objects}
1497 0.001 0.000 0.001 0.000 {method 'count' of 'list' objects}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
6 0.000 0.000 0.000 0.000 {method 'extend' of 'list' objects}
2 0.440 0.220 0.440 0.220 {method 'factorize' of 'pandas.hashtable.Factorizer' objects}
4 0.000 0.000 0.000 0.000 {method 'factorize' of 'pandas.hashtable.Int64Factorizer' objects}
2 0.000 0.000 0.000 0.000 {method 'fill' of 'numpy.ndarray' objects}
2 0.000 0.000 0.000 0.000 {method 'flatten' of 'numpy.ndarray' objects}
1512 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects}
2 0.000 0.000 0.000 0.000 {method 'get_count' of 'pandas.hashtable.Int64Factorizer' objects}
3 0.000 0.000 0.000 0.000 {method 'get_indexer' of 'pandas.index.IndexEngine' objects}
1 0.062 0.062 0.062 0.062 {method 'get_labels' of 'pandas.hashtable.Int64HashTable' objects}
1 0.190 0.190 0.190 0.190 {method 'get_labels' of 'pandas.hashtable.PyObjectHashTable' objects}
1 0.320 0.320 0.320 0.320 {method 'get_labels_groupby' of 'pandas.hashtable.Int64HashTable' objects}
513 0.001 0.000 0.001 0.000 {method 'get_loc' of 'pandas.index.IndexEngine' objects}
1497 0.002 0.000 0.002 0.000 {method 'index' of 'list' objects}
4 0.000 0.000 0.000 0.000 {method 'keys' of 'dict' objects}
2 0.013 0.006 0.013 0.006 {method 'nonzero' of 'numpy.ndarray' objects}
1501 0.001 0.000 0.001 0.000 {method 'pop' of 'list' objects}
3 0.139 0.046 0.139 0.046 {method 'put' of 'numpy.ndarray' objects}
4 0.000 0.000 0.000 0.000 {method 'ravel' of 'numpy.ndarray' objects}
16 0.011 0.001 0.011 0.001 {method 'reduce' of 'numpy.ufunc' objects}
998 0.004 0.000 0.004 0.000 {method 'searchsorted' of 'numpy.ndarray' objects}
3 0.000 0.000 0.000 0.000 {method 'setdefault' of 'dict' objects}
2 0.000 0.000 0.000 0.000 {method 'sort' of 'numpy.ndarray' objects}
2 0.000 0.000 0.000 0.000 {method 'startswith' of 'str' objects}
506 0.097 0.000 0.097 0.000 {method 'take' of 'numpy.ndarray' objects}
1 0.000 0.000 0.000 0.000 {method 'to_array' of 'pandas.hashtable.Int64Vector' objects}
1 0.000 0.000 0.000 0.000 {method 'to_array' of 'pandas.hashtable.ObjectVector' objects}
2035 0.003 0.000 0.005 0.000 {method 'view' of 'numpy.ndarray' objects}
1 0.000 0.000 0.000 0.000 {min}
7 0.012 0.002 0.012 0.002 {numpy.core.multiarray.arange}
583 0.001 0.000 0.001 0.000 {numpy.core.multiarray.array}
4 0.000 0.000 0.000 0.000 {numpy.core.multiarray.concatenate}
1017 0.012 0.000 0.012 0.000 {numpy.core.multiarray.empty}
4 0.008 0.002 0.008 0.002 {numpy.core.multiarray.putmask}
4 0.003 0.001 0.003 0.001 {numpy.core.multiarray.zeros}
20 0.000 0.000 0.000 0.000 {pandas.algos.ensure_int64}
1 0.000 0.000 0.000 0.000 {pandas.algos.ensure_object}
507 0.000 0.000 0.000 0.000 {pandas.algos.ensure_platform_int}
1 0.000 0.000 0.000 0.000 {pandas.algos.inner_join_indexer_object}
1 0.077 0.077 0.077 0.077 {pandas.algos.inner_join}
2 0.120 0.060 0.120 0.060 {pandas.algos.take_1d_int64_int64}
1 0.000 0.000 0.000 0.000 {pandas.algos.take_1d_object_object}
2 0.009 0.005 0.009 0.005 {pandas.algos.take_2d_axis0_int64_int64}
2 0.023 0.012 0.023 0.012 {pandas.algos.take_2d_axis1_int64_int64}
1 0.024 0.024 0.024 0.024 {pandas.algos.take_2d_axis1_object_object}
23 0.014 0.001 0.014 0.001 {pandas.lib.infer_dtype}
1 0.007 0.007 0.007 0.007 {pandas.lib.is_lexsorted}
3 0.000 0.000 0.000 0.000 {pandas.lib.ismember}
4 0.000 0.000 0.000 0.000 {pandas.lib.list_to_object_array}
2 0.001 0.000 0.001 0.000 {pandas.lib.maybe_convert_objects}
2 0.000 0.000 0.000 0.000 {pandas.tslib.is_timestamp_array}
502 0.000 0.000 0.000 0.000 {range}
1 0.000 0.000 0.000 0.000 {setattr}
1000 0.002 0.000 0.006 0.000 {sorted}
6 0.000 0.000 0.000 0.000 {sum}
2 0.000 0.000 0.000 0.000 {time.time}
9 0.000 0.000 0.000 0.000 {zip}
Process finished with exit code 0
The text was updated successfully, but these errors were encountered: