Merging on columns results in loss of categorical dtypes (cast to "object") #13404
Labels
Categorical
Categorical Data Type
Duplicate Report
Duplicate issue or pull request
Reshaping
Concat, Merge/Join, Stack/Unstack, Explode
Code Sample, a copy-pastable example if possible
Expected Output
The try block should print "categories" 's categories the same way as above, with:
Index([u'a', u'b', u'c', u'd'], dtype='object')
However, the data type is replaced to object/string.
This is not fixed by the v0.18.2 release, which fixes some of the merge issues where int's would get casted to floats when merging.
output of
pd.show_versions()
INSTALLED VERSIONS
commit: None
python: 2.7.11.final.0
python-bits: 64
OS: Linux
OS-release: 2.6.32-431.23.3.el6.x86_64
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
pandas: 0.17.1
nose: 1.3.7
pip: 7.1.2
setuptools: 20.3.1
Cython: 0.23.4
numpy: 1.10.4
scipy: 0.16.0
statsmodels: 0.6.1
IPython: 4.0.1
sphinx: 1.3.1
patsy: 0.4.0
dateutil: 2.4.2
pytz: 2015.7
blosc: None
bottleneck: 1.0.0
tables: 3.2.2
numexpr: 2.4.4
matplotlib: 1.5.0
openpyxl: 2.2.6
xlrd: 0.9.4
xlwt: 1.0.0
xlsxwriter: 0.7.7
lxml: 3.4.4
bs4: 4.4.1
html5lib: None
httplib2: None
apiclient: None
sqlalchemy: 1.0.9
pymysql: None
psycopg2: None
Jinja2: None
The text was updated successfully, but these errors were encountered: