Skip to content

AmbiguousTimeError when retrieving Series from HDFStore in table format with DST change #11624

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
JackKelly opened this issue Nov 17, 2015 · 4 comments

Comments

@JackKelly
Copy link
Contributor

In Pandas 0.17, if I put a Series into an HDFStore in table format, and if this Series contains a day light saving transition, then Pandas crashes with an AmbiguousTimeError.

Here's the minimal code example to reproduce the bug:

import pandas as pd
index = pd.date_range("2013-10-26 23:00", "2013-10-27 01:00",
                      tz="Europe/London", freq="H")
series = pd.Series(0, index=index)
with pd.HDFStore("test.hdf", mode="w") as store:
    store.put("series", series, format='table')
    store["series"]

And here's the traceback:

In [4]: ---------------------------------------------------------------------------
AmbiguousTimeError                        Traceback (most recent call last)
<ipython-input-4-5deb3c83fafd> in <module>()
----> 1 __pyfile = open('''/tmp/py7201vZi''');exec(compile(__pyfile.read(), '''/home/jack/temp/pandas_dst_bug.py''', 'exec'));__pyfile.close(); import os; os.remove('''/tmp/py7201vZi''')

/home/jack/temp/pandas_dst_bug.py in <module>()
      2 index = pd.date_range("2013-10-26 23:00", "2013-10-27 01:00",
      3                       tz="Europe/London", freq="H")
----> 4 series = pd.Series(0, index=index)
      5 with pd.HDFStore("test.hdf", mode="w") as store:
      6     store.put("series", series, format='table')

/usr/local/lib/python2.7/dist-packages/pandas/tseries/index.pyc in date_range(start, end, periods, freq, tz, normalize, name, closed)
   1912     return DatetimeIndex(start=start, end=end, periods=periods,
   1913                          freq=freq, tz=tz, normalize=normalize, name=name,
-> 1914                          closed=closed)
   1915 
   1916 

/usr/local/lib/python2.7/dist-packages/pandas/util/decorators.pyc in wrapper(*args, **kwargs)
     87                 else:
     88                     kwargs[new_arg_name] = new_arg_value
---> 89             return func(*args, **kwargs)
     90         return wrapper
     91     return _deprecate_kwarg

/usr/local/lib/python2.7/dist-packages/pandas/tseries/index.pyc in __new__(cls, data, freq, start, end, periods, copy, name, tz, verify_integrity, normalize, closed, ambiguous, dtype, **kwargs)
    234             return cls._generate(start, end, periods, name, freq,
    235                                  tz=tz, normalize=normalize, closed=closed,
--> 236                                  ambiguous=ambiguous)
    237 
    238         if not isinstance(data, (np.ndarray, Index, ABCSeries)):

/usr/local/lib/python2.7/dist-packages/pandas/tseries/index.pyc in _generate(cls, start, end, periods, name, offset, tz, normalize, ambiguous, closed)
    450 
    451                 if end is not None and end.tz is None:
--> 452                     end = end.tz_localize(tz)
    453 
    454             if start and end:

pandas/tslib.pyx in pandas.tslib.Timestamp.tz_localize (pandas/tslib.c:11965)()

pandas/tslib.pyx in pandas.tslib.tz_localize_to_utc (pandas/tslib.c:64516)()

AmbiguousTimeError: Cannot infer dst time from Timestamp('2013-10-27 01:00:00'), try using the 'ambiguous' argument

Everything works fine if:

  • we use format=fixed instead of format=table
  • we used format=table but the Series does not include a DST change

I'm not certain but I expect this bug is related to #11619

I'm 99.999% certain that this bug did not exist in Pandas 0.16.2

In [30]: show_versions()

INSTALLED VERSIONS
------------------
commit: None
python: 2.7.9.final.0
python-bits: 64
OS: Linux
OS-release: 3.19.0-33-generic
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: en_GB.UTF-8

pandas: 0.17.0
nose: 1.3.7
pip: 1.5.6
setuptools: 15.2
Cython: 0.23.1
numpy: 1.10.1
scipy: 0.16.0
statsmodels: 0.6.1
IPython: 4.0.0
sphinx: 1.2.3
patsy: 0.3.0
dateutil: 2.4.2
pytz: 2015.7
blosc: None
bottleneck: None
tables: 3.2.2
numexpr: 2.4.6
matplotlib: 1.4.3
openpyxl: None
xlrd: 0.9.2
xlwt: None
xlsxwriter: None
lxml: None
bs4: 4.3.2
html5lib: 0.999
httplib2: 0.9
apiclient: None
sqlalchemy: None
pymysql: None
psycopg2: 2.5.3 (dt dec pq3 ext)

Finally, just to say another huge thank you to everyone who supports Pandas. It must be a huge amount of work and I am hugely grateful. Pandas is an awesome tool. Thank you.

@jreback
Copy link
Contributor

jreback commented Nov 17, 2015

you understand that this has nothing to do with HDF5 at all. This is failing at the index construction.

index = pd.date_range("2013-10-26 23:00", "2013-10-27 01:00",
                      tz="Europe/London", freq="H")
series = pd.Series(0, index=index)

@JackKelly
Copy link
Contributor Author

Ah, yes, sorry - I'm really not sure why I got confused about that... I'll close this issue and open a new one...

@jreback
Copy link
Contributor

jreback commented Nov 17, 2015

no its ok, just about to push a fix anyhow

@JackKelly
Copy link
Contributor Author

oops, sorry, I was over-eager :)

I'll stop fiddling now so I'll leave it up to you which of these two issues to keep open / kill :)

Thanks again,
Jack

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants