# compute.use_bottleneck: bool # Use the bottleneck library to accelerate if it is installed, # the default is True # Valid values: False,True #compute.use_bottleneck: True # compute.use_numexpr: bool # Use the numexpr library to accelerate computation if it is installed, # the default is True # Valid values: False,True #compute.use_numexpr: True # display.chop_threshold: float or None # if set to a float value, all float values smaller then the given threshold # will be displayed as exactly 0 by repr and friends. #display.chop_threshold: None # display.colheader_justify: 'left'/'right' # Controls the justification of column headers. used by DataFrameFormatter. #display.colheader_justify: right # display.column_space #display.column_space: 12 # display.date_dayfirst: boolean # When True, prints and parses dates with the day first, eg 20/01/2005 #display.date_dayfirst: False # display.date_yearfirst: boolean # When True, prints and parses dates with the year first, eg 2005/01/20 #display.date_yearfirst: False # display.encoding: str/unicode # Defaults to the detected encoding of the console. # Specifies the encoding to be used for strings returned by to_string, # these are generally strings meant to be displayed on the console. #display.encoding: UTF-8 # display.expand_frame_repr: boolean # Whether to print out the full DataFrame repr for wide DataFrames across # multiple lines, `max_columns` is still respected, but the output will # wrap-around across multiple "pages" if its width exceeds `display.width`. #display.expand_frame_repr: True # display.float_format: callable # The callable should accept a floating point number and return # a string with the desired format of the number. This is used # in some places like SeriesFormatter. # See formats.format.EngFormatter for an example. #display.float_format: None # display.html.border: int # A ``border=value`` attribute is inserted in the ```` tag # for the DataFrame HTML repr. #display.html.border: 1 # display.html.table_schema: boolean # Whether to publish a Table Schema representation for frontends # that support it. # (default: False) #display.html.table_schema: False # display.html.use_mathjax: boolean # When True, Jupyter notebook will process table contents using MathJax, # rendering mathematical expressions enclosed by the dollar symbol. # (default: True) #display.html.use_mathjax: True # display.large_repr: 'truncate'/'info' # For DataFrames exceeding max_rows/max_cols, the repr (and HTML repr) can # show a truncated table (the default from 0.13), or switch to the view from # df.info() (the behaviour in earlier versions of pandas). #display.large_repr: truncate # display.latex.escape: bool # This specifies if the to_latex method of a Dataframe uses escapes special # characters. # Valid values: False,True #display.latex.escape: True # display.latex.longtable:bool # This specifies if the to_latex method of a Dataframe uses the longtable # format. # Valid values: False,True #display.latex.longtable: False # display.latex.multicolumn: bool # This specifies if the to_latex method of a Dataframe uses multicolumns # to pretty-print MultiIndex columns. # Valid values: False,True #display.latex.multicolumn: True # display.latex.multicolumn_format: bool # This specifies if the to_latex method of a Dataframe uses multicolumns # to pretty-print MultiIndex columns. # Valid values: False,True #display.latex.multicolumn_format: l # display.latex.multirow: bool # This specifies if the to_latex method of a Dataframe uses multirows # to pretty-print MultiIndex rows. # Valid values: False,True #display.latex.multirow: False # display.latex.repr: boolean # Whether to produce a latex DataFrame representation for jupyter # environments that support it. # (default: False) #display.latex.repr: False # display.max_categories: int # This sets the maximum number of categories pandas should output when # printing out a `Categorical` or a Series of dtype "category". #display.max_categories: 8 # display.max_columns: int # If max_cols is exceeded, switch to truncate view. Depending on # `large_repr`, objects are either centrally truncated or printed as # a summary view. 'None' value means unlimited. # # In case python/IPython is running in a terminal and `large_repr` # equals 'truncate' this can be set to 0 and pandas will auto-detect # the width of the terminal and print a truncated object which fits # the screen width. The IPython notebook, IPython qtconsole, or IDLE # do not run in a terminal and hence it is not possible to do # correct auto-detection. #display.max_columns: 0 # display.max_colwidth: int # The maximum width in characters of a column in the repr of # a pandas data structure. When the column overflows, a "..." # placeholder is embedded in the output. #display.max_colwidth: 50 # display.max_info_columns: int # max_info_columns is used in DataFrame.info method to decide if # per column information will be printed. #display.max_info_columns: 100 # display.max_info_rows: int or None # df.info() will usually show null-counts for each column. # For large frames this can be quite slow. max_info_rows and max_info_cols # limit this null check only to frames with smaller dimensions than # specified. #display.max_info_rows: 1690785 # display.max_rows: int # If max_rows is exceeded, switch to truncate view. Depending on # `large_repr`, objects are either centrally truncated or printed as # a summary view. 'None' value means unlimited. # # In case python/IPython is running in a terminal and `large_repr` # equals 'truncate' this can be set to 0 and pandas will auto-detect # the height of the terminal and print a truncated object which fits # the screen height. The IPython notebook, IPython qtconsole, or # IDLE do not run in a terminal and hence it is not possible to do # correct auto-detection. #display.max_rows: 60 # display.max_seq_items: int or None # when pretty-printing a long sequence, no more then `max_seq_items` # will be printed. If items are omitted, they will be denoted by the # addition of "..." to the resulting string. # # If set to None, the number of items to be printed is unlimited. #display.max_seq_items: 100 # display.memory_usage: bool, string or None # This specifies if the memory usage of a DataFrame should be displayed when # df.info() is called. Valid values True,False,'deep' #display.memory_usage: True # display.multi_sparse: boolean # "sparsify" MultiIndex display (don't display repeated # elements in outer levels within groups) #display.multi_sparse: True # display.notebook_repr_html: boolean # When True, IPython notebook will use html representation for # pandas objects (if it is available). #display.notebook_repr_html: True # display.pprint_nest_depth: int # Controls the number of nested levels to process when pretty-printing #display.pprint_nest_depth: 3 # display.precision: int # Floating point output precision (number of significant digits). This is # only a suggestion #display.precision: 6 # display.show_dimensions: boolean or 'truncate' # Whether to print out dimensions at the end of DataFrame repr. # If 'truncate' is specified, only print out the dimensions if the # frame is truncated (e.g. not display all rows and/or columns) #display.show_dimensions: truncate # display.unicode.ambiguous_as_wide: boolean # Whether to use the Unicode East Asian Width to calculate the display text # width. # Enabling this may affect to the performance (default: False) #display.unicode.ambiguous_as_wide: False # display.unicode.east_asian_width: boolean # Whether to use the Unicode East Asian Width to calculate the display text # width. # Enabling this may affect to the performance (default: False) #display.unicode.east_asian_width: False # display.width: int # Width of the display in characters. In case python/IPython is running in # a terminal this can be set to None and pandas will correctly auto-detect # the width. # Note that the IPython notebook, IPython qtconsole, or IDLE do not run in a # terminal and hence it is not possible to correctly detect the width. #display.width: 80 # html.border: int # A ``border=value`` attribute is inserted in the ``
`` tag # for the DataFrame HTML repr. # DEPRECATED #html.border: 1 # io.excel.xls.writer: string # The default Excel writer engine for 'xls' files. Available options: # auto, xlwt. #io.excel.xls.writer: auto # io.excel.xlsm.writer: string # The default Excel writer engine for 'xlsm' files. Available options: # auto, openpyxl. #io.excel.xlsm.writer: auto # io.excel.xlsx.writer: string # The default Excel writer engine for 'xlsx' files. Available options: # auto, openpyxl, xlsxwriter. #io.excel.xlsx.writer: auto # io.hdf.default_format: format # default format writing format, if None, then # put will default to 'fixed' and append will default to 'table' #io.hdf.default_format: None # io.hdf.dropna_table: boolean # drop ALL nan rows when appending to a table #io.hdf.dropna_table: False # io.parquet.engine: string # The default parquet reader/writer engine. Available options: # 'auto', 'pyarrow', 'fastparquet', the default is 'auto' #io.parquet.engine: auto # mode.chained_assignment: string # Raise an exception, warn, or no action if trying to use chained assignment, # The default is warn #mode.chained_assignment: warn # mode.sim_interactive: boolean # Whether to simulate interactive mode for purposes of testing #mode.sim_interactive: False # mode.use_inf_as_na: boolean # True means treat None, NaN, INF, -INF as NA (old way), # False means None and NaN are null, but INF, -INF are not NA # (new way). #mode.use_inf_as_na: False # mode.use_inf_as_null: boolean # use_inf_as_null had been deprecated and will be removed in a future # version. Use `use_inf_as_na` instead. # DEPRECATED #mode.use_inf_as_null: False # plotting.matplotlib.register_converters: bool # Whether to register converters with matplotlib's units registry for # dates, times, datetimes, and Periods. Toggling to False will remove # the converters, restoring any converters that pandas overwrote. #plotting.matplotlib.register_converters: True