# compute.use_bottleneck: bool
# Use the bottleneck library to accelerate if it is installed,
# the default is True
# Valid values: False,True
#compute.use_bottleneck: True
# compute.use_numexpr: bool
# Use the numexpr library to accelerate computation if it is installed,
# the default is True
# Valid values: False,True
#compute.use_numexpr: True
# display.chop_threshold: float or None
# if set to a float value, all float values smaller then the given threshold
# will be displayed as exactly 0 by repr and friends.
#display.chop_threshold: None
# display.colheader_justify: 'left'/'right'
# Controls the justification of column headers. used by DataFrameFormatter.
#display.colheader_justify: right
# display.column_space
#display.column_space: 12
# display.date_dayfirst: boolean
# When True, prints and parses dates with the day first, eg 20/01/2005
#display.date_dayfirst: False
# display.date_yearfirst: boolean
# When True, prints and parses dates with the year first, eg 2005/01/20
#display.date_yearfirst: False
# display.encoding: str/unicode
# Defaults to the detected encoding of the console.
# Specifies the encoding to be used for strings returned by to_string,
# these are generally strings meant to be displayed on the console.
#display.encoding: UTF-8
# display.expand_frame_repr: boolean
# Whether to print out the full DataFrame repr for wide DataFrames across
# multiple lines, `max_columns` is still respected, but the output will
# wrap-around across multiple "pages" if its width exceeds `display.width`.
#display.expand_frame_repr: True
# display.float_format: callable
# The callable should accept a floating point number and return
# a string with the desired format of the number. This is used
# in some places like SeriesFormatter.
# See formats.format.EngFormatter for an example.
#display.float_format: None
# display.html.border: int
# A ``border=value`` attribute is inserted in the ``
`` tag
# for the DataFrame HTML repr.
#display.html.border: 1
# display.html.table_schema: boolean
# Whether to publish a Table Schema representation for frontends
# that support it.
# (default: False)
#display.html.table_schema: False
# display.html.use_mathjax: boolean
# When True, Jupyter notebook will process table contents using MathJax,
# rendering mathematical expressions enclosed by the dollar symbol.
# (default: True)
#display.html.use_mathjax: True
# display.large_repr: 'truncate'/'info'
# For DataFrames exceeding max_rows/max_cols, the repr (and HTML repr) can
# show a truncated table (the default from 0.13), or switch to the view from
# df.info() (the behaviour in earlier versions of pandas).
#display.large_repr: truncate
# display.latex.escape: bool
# This specifies if the to_latex method of a Dataframe uses escapes special
# characters.
# Valid values: False,True
#display.latex.escape: True
# display.latex.longtable:bool
# This specifies if the to_latex method of a Dataframe uses the longtable
# format.
# Valid values: False,True
#display.latex.longtable: False
# display.latex.multicolumn: bool
# This specifies if the to_latex method of a Dataframe uses multicolumns
# to pretty-print MultiIndex columns.
# Valid values: False,True
#display.latex.multicolumn: True
# display.latex.multicolumn_format: bool
# This specifies if the to_latex method of a Dataframe uses multicolumns
# to pretty-print MultiIndex columns.
# Valid values: False,True
#display.latex.multicolumn_format: l
# display.latex.multirow: bool
# This specifies if the to_latex method of a Dataframe uses multirows
# to pretty-print MultiIndex rows.
# Valid values: False,True
#display.latex.multirow: False
# display.latex.repr: boolean
# Whether to produce a latex DataFrame representation for jupyter
# environments that support it.
# (default: False)
#display.latex.repr: False
# display.max_categories: int
# This sets the maximum number of categories pandas should output when
# printing out a `Categorical` or a Series of dtype "category".
#display.max_categories: 8
# display.max_columns: int
# If max_cols is exceeded, switch to truncate view. Depending on
# `large_repr`, objects are either centrally truncated or printed as
# a summary view. 'None' value means unlimited.
#
# In case python/IPython is running in a terminal and `large_repr`
# equals 'truncate' this can be set to 0 and pandas will auto-detect
# the width of the terminal and print a truncated object which fits
# the screen width. The IPython notebook, IPython qtconsole, or IDLE
# do not run in a terminal and hence it is not possible to do
# correct auto-detection.
#display.max_columns: 0
# display.max_colwidth: int
# The maximum width in characters of a column in the repr of
# a pandas data structure. When the column overflows, a "..."
# placeholder is embedded in the output.
#display.max_colwidth: 50
# display.max_info_columns: int
# max_info_columns is used in DataFrame.info method to decide if
# per column information will be printed.
#display.max_info_columns: 100
# display.max_info_rows: int or None
# df.info() will usually show null-counts for each column.
# For large frames this can be quite slow. max_info_rows and max_info_cols
# limit this null check only to frames with smaller dimensions than
# specified.
#display.max_info_rows: 1690785
# display.max_rows: int
# If max_rows is exceeded, switch to truncate view. Depending on
# `large_repr`, objects are either centrally truncated or printed as
# a summary view. 'None' value means unlimited.
#
# In case python/IPython is running in a terminal and `large_repr`
# equals 'truncate' this can be set to 0 and pandas will auto-detect
# the height of the terminal and print a truncated object which fits
# the screen height. The IPython notebook, IPython qtconsole, or
# IDLE do not run in a terminal and hence it is not possible to do
# correct auto-detection.
#display.max_rows: 60
# display.max_seq_items: int or None
# when pretty-printing a long sequence, no more then `max_seq_items`
# will be printed. If items are omitted, they will be denoted by the
# addition of "..." to the resulting string.
#
# If set to None, the number of items to be printed is unlimited.
#display.max_seq_items: 100
# display.memory_usage: bool, string or None
# This specifies if the memory usage of a DataFrame should be displayed when
# df.info() is called. Valid values True,False,'deep'
#display.memory_usage: True
# display.multi_sparse: boolean
# "sparsify" MultiIndex display (don't display repeated
# elements in outer levels within groups)
#display.multi_sparse: True
# display.notebook_repr_html: boolean
# When True, IPython notebook will use html representation for
# pandas objects (if it is available).
#display.notebook_repr_html: True
# display.pprint_nest_depth: int
# Controls the number of nested levels to process when pretty-printing
#display.pprint_nest_depth: 3
# display.precision: int
# Floating point output precision (number of significant digits). This is
# only a suggestion
#display.precision: 6
# display.show_dimensions: boolean or 'truncate'
# Whether to print out dimensions at the end of DataFrame repr.
# If 'truncate' is specified, only print out the dimensions if the
# frame is truncated (e.g. not display all rows and/or columns)
#display.show_dimensions: truncate
# display.unicode.ambiguous_as_wide: boolean
# Whether to use the Unicode East Asian Width to calculate the display text
# width.
# Enabling this may affect to the performance (default: False)
#display.unicode.ambiguous_as_wide: False
# display.unicode.east_asian_width: boolean
# Whether to use the Unicode East Asian Width to calculate the display text
# width.
# Enabling this may affect to the performance (default: False)
#display.unicode.east_asian_width: False
# display.width: int
# Width of the display in characters. In case python/IPython is running in
# a terminal this can be set to None and pandas will correctly auto-detect
# the width.
# Note that the IPython notebook, IPython qtconsole, or IDLE do not run in a
# terminal and hence it is not possible to correctly detect the width.
#display.width: 80
# html.border: int
# A ``border=value`` attribute is inserted in the ```` tag
# for the DataFrame HTML repr.
# DEPRECATED
#html.border: 1
# io.excel.xls.writer: string
# The default Excel writer engine for 'xls' files. Available options:
# auto, xlwt.
#io.excel.xls.writer: auto
# io.excel.xlsm.writer: string
# The default Excel writer engine for 'xlsm' files. Available options:
# auto, openpyxl.
#io.excel.xlsm.writer: auto
# io.excel.xlsx.writer: string
# The default Excel writer engine for 'xlsx' files. Available options:
# auto, openpyxl, xlsxwriter.
#io.excel.xlsx.writer: auto
# io.hdf.default_format: format
# default format writing format, if None, then
# put will default to 'fixed' and append will default to 'table'
#io.hdf.default_format: None
# io.hdf.dropna_table: boolean
# drop ALL nan rows when appending to a table
#io.hdf.dropna_table: False
# io.parquet.engine: string
# The default parquet reader/writer engine. Available options:
# 'auto', 'pyarrow', 'fastparquet', the default is 'auto'
#io.parquet.engine: auto
# mode.chained_assignment: string
# Raise an exception, warn, or no action if trying to use chained assignment,
# The default is warn
#mode.chained_assignment: warn
# mode.sim_interactive: boolean
# Whether to simulate interactive mode for purposes of testing
#mode.sim_interactive: False
# mode.use_inf_as_na: boolean
# True means treat None, NaN, INF, -INF as NA (old way),
# False means None and NaN are null, but INF, -INF are not NA
# (new way).
#mode.use_inf_as_na: False
# mode.use_inf_as_null: boolean
# use_inf_as_null had been deprecated and will be removed in a future
# version. Use `use_inf_as_na` instead.
# DEPRECATED
#mode.use_inf_as_null: False
# plotting.matplotlib.register_converters: bool
# Whether to register converters with matplotlib's units registry for
# dates, times, datetimes, and Periods. Toggling to False will remove
# the converters, restoring any converters that pandas overwrote.
#plotting.matplotlib.register_converters: True