Skip to content

Commit fed4ace

Browse files
Merge branch 'main' into series_map_func_param
2 parents cf6d36b + 9ff4e9c commit fed4ace

File tree

104 files changed

+977
-632
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

104 files changed

+977
-632
lines changed

.github/CODEOWNERS

Lines changed: 0 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -10,10 +10,8 @@ doc/source/development @noatamir
1010

1111
# pandas
1212
pandas/_libs/ @WillAyd
13-
pandas/_libs/tslibs/* @MarcoGorelli
1413
pandas/_typing.py @Dr-Irv
1514
pandas/core/groupby/* @rhshadrach
16-
pandas/core/tools/datetimes.py @MarcoGorelli
1715
pandas/io/excel/* @rhshadrach
1816
pandas/io/formats/style.py @attack68
1917
pandas/io/formats/style_render.py @attack68

.github/workflows/wheels.yml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -153,7 +153,7 @@ jobs:
153153
run: echo "sdist_name=$(cd ./dist && ls -d */)" >> "$GITHUB_ENV"
154154

155155
- name: Build wheels
156-
uses: pypa/[email protected].0
156+
uses: pypa/[email protected].2
157157
with:
158158
package-dir: ./dist/${{ startsWith(matrix.buildplat[1], 'macosx') && env.sdist_name || needs.build_sdist.outputs.sdist_file }}
159159
env:

.pre-commit-config.yaml

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
minimum_pre_commit_version: 2.15.0
1+
minimum_pre_commit_version: 4.0.0
22
exclude: ^LICENSES/|\.(html|csv|svg)$
33
# reserve "manual" for relatively slow hooks which we still want to run in CI
44
default_stages: [
@@ -19,13 +19,13 @@ ci:
1919
skip: [pyright, mypy]
2020
repos:
2121
- repo: https://github.com/astral-sh/ruff-pre-commit
22-
rev: v0.9.9
22+
rev: v0.11.4
2323
hooks:
2424
- id: ruff
2525
args: [--exit-non-zero-on-fix]
2626
exclude: ^pandas/tests/frame/test_query_eval.py
2727
- id: ruff
28-
# TODO: remove autofixe-only rules when they are checked by ruff
28+
# TODO: remove autofix only rules when they are checked by ruff
2929
name: ruff-selected-autofixes
3030
alias: ruff-selected-autofixes
3131
files: ^pandas
@@ -34,7 +34,7 @@ repos:
3434
- id: ruff-format
3535
exclude: ^scripts|^pandas/tests/frame/test_query_eval.py
3636
- repo: https://github.com/jendrikseipp/vulture
37-
rev: 'v2.14'
37+
rev: v2.14
3838
hooks:
3939
- id: vulture
4040
entry: python scripts/run_vulture.py
@@ -95,14 +95,14 @@ repos:
9595
- id: sphinx-lint
9696
args: ["--enable", "all", "--disable", "line-too-long"]
9797
- repo: https://github.com/pre-commit/mirrors-clang-format
98-
rev: v19.1.7
98+
rev: v20.1.0
9999
hooks:
100100
- id: clang-format
101101
files: ^pandas/_libs/src|^pandas/_libs/include
102102
args: [-i]
103103
types_or: [c, c++]
104104
- repo: https://github.com/trim21/pre-commit-mirror-meson
105-
rev: v1.7.0
105+
rev: v1.7.2
106106
hooks:
107107
- id: meson-fmt
108108
args: ['--inplace']

asv_bench/benchmarks/frame_methods.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -517,7 +517,7 @@ def setup(self):
517517
self.df = DataFrame(np.random.randn(1000, 100))
518518

519519
self.s = Series(np.arange(1028.0))
520-
self.df2 = DataFrame({i: self.s for i in range(1028)})
520+
self.df2 = DataFrame(dict.fromkeys(range(1028), self.s))
521521
self.df3 = DataFrame(np.random.randn(1000, 3), columns=list("ABC"))
522522

523523
def time_apply_user_func(self):

asv_bench/benchmarks/indexing_engines.py

Lines changed: 16 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -67,6 +67,14 @@ class NumericEngineIndexing:
6767
def setup(self, engine_and_dtype, index_type, unique, N):
6868
engine, dtype = engine_and_dtype
6969

70+
if (
71+
index_type == "non_monotonic"
72+
and dtype in [np.int16, np.int8, np.uint8]
73+
and unique
74+
):
75+
# Values overflow
76+
raise NotImplementedError
77+
7078
if index_type == "monotonic_incr":
7179
if unique:
7280
arr = np.arange(N * 3, dtype=dtype)
@@ -115,6 +123,14 @@ def setup(self, engine_and_dtype, index_type, unique, N):
115123
engine, dtype = engine_and_dtype
116124
dtype = dtype.lower()
117125

126+
if (
127+
index_type == "non_monotonic"
128+
and dtype in ["int16", "int8", "uint8"]
129+
and unique
130+
):
131+
# Values overflow
132+
raise NotImplementedError
133+
118134
if index_type == "monotonic_incr":
119135
if unique:
120136
arr = np.arange(N * 3, dtype=dtype)

ci/code_checks.sh

Lines changed: 0 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -72,13 +72,6 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
7272
-i "pandas.Series.dt PR01" `# Accessors are implemented as classes, but we do not document the Parameters section` \
7373
-i "pandas.Period.freq GL08" \
7474
-i "pandas.Period.ordinal GL08" \
75-
-i "pandas.Timedelta.max PR02" \
76-
-i "pandas.Timedelta.min PR02" \
77-
-i "pandas.Timedelta.resolution PR02" \
78-
-i "pandas.Timestamp.max PR02" \
79-
-i "pandas.Timestamp.min PR02" \
80-
-i "pandas.Timestamp.resolution PR02" \
81-
-i "pandas.Timestamp.tzinfo GL08" \
8275
-i "pandas.core.groupby.DataFrameGroupBy.plot PR02" \
8376
-i "pandas.core.groupby.SeriesGroupBy.plot PR02" \
8477
-i "pandas.core.resample.Resampler.quantile PR01,PR07" \

ci/meta.yaml

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -89,4 +89,3 @@ extra:
8989
- datapythonista
9090
- phofl
9191
- lithomas1
92-
- marcogorelli

doc/source/development/contributing_codebase.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -537,7 +537,7 @@ Preferred ``pytest`` idioms
537537
test and does not check if the test will fail. If this is the behavior you desire, use ``pytest.skip`` instead.
538538

539539
If a test is known to fail but the manner in which it fails
540-
is not meant to be captured, use ``pytest.mark.xfail`` It is common to use this method for a test that
540+
is not meant to be captured, use ``pytest.mark.xfail``. It is common to use this method for a test that
541541
exhibits buggy behavior or a non-implemented feature. If
542542
the failing test has flaky behavior, use the argument ``strict=False``. This
543543
will make it so pytest does not fail if the test happens to pass. Using ``strict=False`` is highly undesirable, please use it only as a last resort.

doc/source/development/debugging_extensions.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -23,7 +23,7 @@ By default building pandas from source will generate a release build. To generat
2323

2424
.. note::
2525

26-
conda environments update CFLAGS/CPPFLAGS with flags that are geared towards generating releases. If using conda, you may need to set ``CFLAGS="$CFLAGS -O0"`` and ``CPPFLAGS="$CPPFLAGS -O0"`` to ensure optimizations are turned off for debugging
26+
conda environments update CFLAGS/CPPFLAGS with flags that are geared towards generating releases, and may work counter towards usage in a development environment. If using conda, you should unset these environment variables via ``export CFLAGS=`` and ``export CPPFLAGS=``
2727

2828
By specifying ``builddir="debug"`` all of the targets will be built and placed in the debug directory relative to the project root. This helps to keep your debug and release artifacts separate; you are of course able to choose a different directory name or omit altogether if you do not care to separate build types.
2929

doc/source/getting_started/comparison/comparison_with_r.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -383,7 +383,7 @@ In Python, since ``a`` is a list, you can simply use list comprehension.
383383

384384
.. ipython:: python
385385
386-
a = np.array(list(range(1, 24)) + [np.NAN]).reshape(2, 3, 4)
386+
a = np.array(list(range(1, 24)) + [np.nan]).reshape(2, 3, 4)
387387
pd.DataFrame([tuple(list(x) + [val]) for x, val in np.ndenumerate(a)])
388388
389389
meltlist
@@ -402,7 +402,7 @@ In Python, this list would be a list of tuples, so
402402

403403
.. ipython:: python
404404
405-
a = list(enumerate(list(range(1, 5)) + [np.NAN]))
405+
a = list(enumerate(list(range(1, 5)) + [np.nan]))
406406
pd.DataFrame(a)
407407
408408
For more details and examples see :ref:`the Intro to Data Structures

doc/source/user_guide/basics.rst

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -36,7 +36,7 @@ of elements to display is five, but you may pass a custom number.
3636
Attributes and underlying data
3737
------------------------------
3838

39-
pandas objects have a number of attributes enabling you to access the metadata
39+
pandas objects have a number of attributes enabling you to access the metadata.
4040

4141
* **shape**: gives the axis dimensions of the object, consistent with ndarray
4242
* Axis labels
@@ -59,7 +59,7 @@ NumPy's type system to add support for custom arrays
5959
(see :ref:`basics.dtypes`).
6060

6161
To get the actual data inside a :class:`Index` or :class:`Series`, use
62-
the ``.array`` property
62+
the ``.array`` property.
6363

6464
.. ipython:: python
6565
@@ -88,18 +88,18 @@ NumPy doesn't have a dtype to represent timezone-aware datetimes, so there
8888
are two possibly useful representations:
8989

9090
1. An object-dtype :class:`numpy.ndarray` with :class:`Timestamp` objects, each
91-
with the correct ``tz``
91+
with the correct ``tz``.
9292
2. A ``datetime64[ns]`` -dtype :class:`numpy.ndarray`, where the values have
93-
been converted to UTC and the timezone discarded
93+
been converted to UTC and the timezone discarded.
9494

95-
Timezones may be preserved with ``dtype=object``
95+
Timezones may be preserved with ``dtype=object``:
9696

9797
.. ipython:: python
9898
9999
ser = pd.Series(pd.date_range("2000", periods=2, tz="CET"))
100100
ser.to_numpy(dtype=object)
101101
102-
Or thrown away with ``dtype='datetime64[ns]'``
102+
Or thrown away with ``dtype='datetime64[ns]'``:
103103

104104
.. ipython:: python
105105
@@ -2064,12 +2064,12 @@ different numeric dtypes will **NOT** be combined. The following example will gi
20642064

20652065
.. ipython:: python
20662066
2067-
df1 = pd.DataFrame(np.random.randn(8, 1), columns=["A"], dtype="float32")
2067+
df1 = pd.DataFrame(np.random.randn(8, 1), columns=["A"], dtype="float64")
20682068
df1
20692069
df1.dtypes
20702070
df2 = pd.DataFrame(
20712071
{
2072-
"A": pd.Series(np.random.randn(8), dtype="float16"),
2072+
"A": pd.Series(np.random.randn(8), dtype="float32"),
20732073
"B": pd.Series(np.random.randn(8)),
20742074
"C": pd.Series(np.random.randint(0, 255, size=8), dtype="uint8"), # [0,255] (range of uint8)
20752075
}

doc/source/user_guide/enhancingperf.rst

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -171,6 +171,7 @@ can be improved by passing an ``np.ndarray``.
171171
In [4]: %%cython
172172
...: cimport numpy as np
173173
...: import numpy as np
174+
...: np.import_array()
174175
...: cdef double f_typed(double x) except? -2:
175176
...: return x * (x - 1)
176177
...: cpdef double integrate_f_typed(double a, double b, int N):
@@ -225,6 +226,7 @@ and ``wraparound`` checks can yield more performance.
225226
...: cimport cython
226227
...: cimport numpy as np
227228
...: import numpy as np
229+
...: np.import_array()
228230
...: cdef np.float64_t f_typed(np.float64_t x) except? -2:
229231
...: return x * (x - 1)
230232
...: cpdef np.float64_t integrate_f_typed(np.float64_t a, np.float64_t b, np.int64_t N):

doc/source/whatsnew/v0.11.0.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -74,10 +74,10 @@ Numeric dtypes will propagate and can coexist in DataFrames. If a dtype is passe
7474

7575
.. ipython:: python
7676
77-
df1 = pd.DataFrame(np.random.randn(8, 1), columns=['A'], dtype='float32')
77+
df1 = pd.DataFrame(np.random.randn(8, 1), columns=['A'], dtype='float64')
7878
df1
7979
df1.dtypes
80-
df2 = pd.DataFrame({'A': pd.Series(np.random.randn(8), dtype='float16'),
80+
df2 = pd.DataFrame({'A': pd.Series(np.random.randn(8), dtype='float32'),
8181
'B': pd.Series(np.random.randn(8)),
8282
'C': pd.Series(range(8), dtype='uint8')})
8383
df2

doc/source/whatsnew/v3.0.0.rst

Lines changed: 12 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -68,6 +68,7 @@ Other enhancements
6868
- :func:`read_parquet` accepts ``to_pandas_kwargs`` which are forwarded to :meth:`pyarrow.Table.to_pandas` which enables passing additional keywords to customize the conversion to pandas, such as ``maps_as_pydicts`` to read the Parquet map data type as python dictionaries (:issue:`56842`)
6969
- :meth:`.DataFrameGroupBy.transform`, :meth:`.SeriesGroupBy.transform`, :meth:`.DataFrameGroupBy.agg`, :meth:`.SeriesGroupBy.agg`, :meth:`.SeriesGroupBy.apply`, :meth:`.DataFrameGroupBy.apply` now support ``kurt`` (:issue:`40139`)
7070
- :meth:`DataFrame.apply` supports using third-party execution engines like the Bodo.ai JIT compiler (:issue:`60668`)
71+
- :meth:`DataFrame.iloc` and :meth:`Series.iloc` now support boolean masks in ``__getitem__`` for more consistent indexing behavior (:issue:`60994`)
7172
- :meth:`DataFrameGroupBy.transform`, :meth:`SeriesGroupBy.transform`, :meth:`DataFrameGroupBy.agg`, :meth:`SeriesGroupBy.agg`, :meth:`RollingGroupby.apply`, :meth:`ExpandingGroupby.apply`, :meth:`Rolling.apply`, :meth:`Expanding.apply`, :meth:`DataFrame.apply` with ``engine="numba"`` now supports positional arguments passed as kwargs (:issue:`58995`)
7273
- :meth:`Rolling.agg`, :meth:`Expanding.agg` and :meth:`ExponentialMovingWindow.agg` now accept :class:`NamedAgg` aggregations through ``**kwargs`` (:issue:`28333`)
7374
- :meth:`Series.map` can now accept kwargs to pass on to func (:issue:`59814`)
@@ -637,6 +638,7 @@ Bug fixes
637638
Categorical
638639
^^^^^^^^^^^
639640
- Bug in :func:`Series.apply` where ``nan`` was ignored for :class:`CategoricalDtype` (:issue:`59938`)
641+
- Bug in :meth:`Series.convert_dtypes` with ``dtype_backend="pyarrow"`` where empty :class:`CategoricalDtype` :class:`Series` raised an error or got converted to ``null[pyarrow]`` (:issue:`59934`)
640642
-
641643

642644
Datetimelike
@@ -673,6 +675,7 @@ Timezones
673675

674676
Numeric
675677
^^^^^^^
678+
- Bug in :meth:`DataFrame.corr` where numerical precision errors resulted in correlations above ``1.0`` (:issue:`61120`)
676679
- Bug in :meth:`DataFrame.quantile` where the column type was not preserved when ``numeric_only=True`` with a list-like ``q`` produced an empty result (:issue:`59035`)
677680
- Bug in ``np.matmul`` with :class:`Index` inputs raising a ``TypeError`` (:issue:`57079`)
678681

@@ -704,6 +707,7 @@ Indexing
704707
- Bug in :meth:`Index.get_indexer` and similar methods when ``NaN`` is located at or after position 128 (:issue:`58924`)
705708
- Bug in :meth:`MultiIndex.insert` when a new value inserted to a datetime-like level gets cast to ``NaT`` and fails indexing (:issue:`60388`)
706709
- Bug in printing :attr:`Index.names` and :attr:`MultiIndex.levels` would not escape single quotes (:issue:`60190`)
710+
- Bug in reindexing of :class:`DataFrame` with :class:`PeriodDtype` columns in case of consolidated block (:issue:`60980`, :issue:`60273`)
707711

708712
Missing
709713
^^^^^^^
@@ -740,6 +744,7 @@ I/O
740744
- Bug in :meth:`read_csv` where the order of the ``na_values`` makes an inconsistency when ``na_values`` is a list non-string values. (:issue:`59303`)
741745
- Bug in :meth:`read_excel` raising ``ValueError`` when passing array of boolean values when ``dtype="boolean"``. (:issue:`58159`)
742746
- Bug in :meth:`read_html` where ``rowspan`` in header row causes incorrect conversion to ``DataFrame``. (:issue:`60210`)
747+
- Bug in :meth:`read_json` ignoring the given ``dtype`` when ``engine="pyarrow"`` (:issue:`59516`)
743748
- Bug in :meth:`read_json` not validating the ``typ`` argument to not be exactly ``"frame"`` or ``"series"`` (:issue:`59124`)
744749
- Bug in :meth:`read_json` where extreme value integers in string format were incorrectly parsed as a different integer number (:issue:`20608`)
745750
- Bug in :meth:`read_stata` raising ``KeyError`` when input file is stored in big-endian format and contains strL data. (:issue:`58638`)
@@ -759,6 +764,7 @@ Plotting
759764
- Bug in :meth:`DataFrame.plot.bar` with ``stacked=True`` where labels on stacked bars with zero-height segments were incorrectly positioned at the base instead of the label position of the previous segment (:issue:`59429`)
760765
- Bug in :meth:`DataFrame.plot.line` raising ``ValueError`` when set both color and a ``dict`` style (:issue:`59461`)
761766
- Bug in :meth:`DataFrame.plot` that causes a shift to the right when the frequency multiplier is greater than one. (:issue:`57587`)
767+
- Bug in :meth:`Series.plot` preventing a line and scatter plot from being aligned (:issue:`61005`)
762768
- Bug in :meth:`Series.plot` with ``kind="pie"`` with :class:`ArrowDtype` (:issue:`59192`)
763769

764770
Groupby/resample/rolling
@@ -770,6 +776,8 @@ Groupby/resample/rolling
770776
- Bug in :meth:`.DataFrameGroupBy.quantile` when ``interpolation="nearest"`` is inconsistent with :meth:`DataFrame.quantile` (:issue:`47942`)
771777
- Bug in :meth:`.Resampler.interpolate` on a :class:`DataFrame` with non-uniform sampling and/or indices not aligning with the resulting resampled index would result in wrong interpolation (:issue:`21351`)
772778
- Bug in :meth:`DataFrame.ewm` and :meth:`Series.ewm` when passed ``times`` and aggregation functions other than mean (:issue:`51695`)
779+
- Bug in :meth:`DataFrame.resample` and :meth:`Series.resample` were not keeping the index name when the index had :class:`ArrowDtype` timestamp dtype (:issue:`61222`)
780+
- Bug in :meth:`DataFrame.resample` changing index type to :class:`MultiIndex` when the dataframe is empty and using an upsample method (:issue:`55572`)
773781
- Bug in :meth:`DataFrameGroupBy.agg` that raises ``AttributeError`` when there is dictionary input and duplicated columns, instead of returning a DataFrame with the aggregation of all duplicate columns. (:issue:`55041`)
774782
- Bug in :meth:`DataFrameGroupBy.apply` and :meth:`SeriesGroupBy.apply` for empty data frame with ``group_keys=False`` still creating output index using group keys. (:issue:`60471`)
775783
- Bug in :meth:`DataFrameGroupBy.apply` that was returning a completely empty DataFrame when all return values of ``func`` were ``None`` instead of returning an empty DataFrame with the original columns and dtypes. (:issue:`57775`)
@@ -821,6 +829,7 @@ Other
821829
- Bug in :class:`DataFrame` when passing a ``dict`` with a NA scalar and ``columns`` that would always return ``np.nan`` (:issue:`57205`)
822830
- Bug in :class:`Series` ignoring errors when trying to convert :class:`Series` input data to the given ``dtype`` (:issue:`60728`)
823831
- Bug in :func:`eval` on :class:`ExtensionArray` on including division ``/`` failed with a ``TypeError``. (:issue:`58748`)
832+
- Bug in :func:`eval` where method calls on binary operations like ``(x + y).dropna()`` would raise ``AttributeError: 'BinOp' object has no attribute 'value'`` (:issue:`61175`)
824833
- Bug in :func:`eval` where the names of the :class:`Series` were not preserved when using ``engine="numexpr"``. (:issue:`10239`)
825834
- Bug in :func:`eval` with ``engine="numexpr"`` returning unexpected result for float division. (:issue:`59736`)
826835
- Bug in :func:`to_numeric` raising ``TypeError`` when ``arg`` is a :class:`Timedelta` or :class:`Timestamp` scalar. (:issue:`59944`)
@@ -830,15 +839,18 @@ Other
830839
- Bug in :meth:`DataFrame.eval` and :meth:`DataFrame.query` which did not allow to use ``tan`` function. (:issue:`55091`)
831840
- Bug in :meth:`DataFrame.query` where using duplicate column names led to a ``TypeError``. (:issue:`59950`)
832841
- Bug in :meth:`DataFrame.query` which raised an exception or produced incorrect results when expressions contained backtick-quoted column names containing the hash character ``#``, backticks, or characters that fall outside the ASCII range (U+0001..U+007F). (:issue:`59285`) (:issue:`49633`)
842+
- Bug in :meth:`DataFrame.query` which raised an exception when querying integer column names using backticks. (:issue:`60494`)
833843
- Bug in :meth:`DataFrame.shift` where passing a ``freq`` on a DataFrame with no columns did not shift the index correctly. (:issue:`60102`)
834844
- Bug in :meth:`DataFrame.sort_index` when passing ``axis="columns"`` and ``ignore_index=True`` and ``ascending=False`` not returning a :class:`RangeIndex` columns (:issue:`57293`)
835845
- Bug in :meth:`DataFrame.transform` that was returning the wrong order unless the index was monotonically increasing. (:issue:`57069`)
836846
- Bug in :meth:`DataFrame.where` where using a non-bool type array in the function would return a ``ValueError`` instead of a ``TypeError`` (:issue:`56330`)
837847
- Bug in :meth:`Index.sort_values` when passing a key function that turns values into tuples, e.g. ``key=natsort.natsort_key``, would raise ``TypeError`` (:issue:`56081`)
838848
- Bug in :meth:`MultiIndex.fillna` error message was referring to ``isna`` instead of ``fillna`` (:issue:`60974`)
849+
- Bug in :meth:`Series.describe` where median percentile was always included when the ``percentiles`` argument was passed (:issue:`60550`).
839850
- Bug in :meth:`Series.diff` allowing non-integer values for the ``periods`` argument. (:issue:`56607`)
840851
- Bug in :meth:`Series.dt` methods in :class:`ArrowDtype` that were returning incorrect values. (:issue:`57355`)
841852
- Bug in :meth:`Series.isin` raising ``TypeError`` when series is large (>10**6) and ``values`` contains NA (:issue:`60678`)
853+
- Bug in :meth:`Series.mode` where an exception was raised when taking the mode with nullable types with no null values in the series. (:issue:`58926`)
842854
- Bug in :meth:`Series.rank` that doesn't preserve missing values for nullable integers when ``na_option='keep'``. (:issue:`56976`)
843855
- Bug in :meth:`Series.replace` and :meth:`DataFrame.replace` inconsistently replacing matching instances when ``regex=True`` and missing values are present. (:issue:`56599`)
844856
- Bug in :meth:`Series.replace` and :meth:`DataFrame.replace` throwing ``ValueError`` when ``regex=True`` and all NA values. (:issue:`60688`)

0 commit comments

Comments
 (0)