Skip to content

Commit f85ae92

Browse files
committed
DOC: force doc build
1 parent 0ae89b0 commit f85ae92

File tree

1 file changed

+36
-36
lines changed

1 file changed

+36
-36
lines changed

doc/source/io.rst

+36-36
Original file line numberDiff line numberDiff line change
@@ -28,10 +28,10 @@
2828
IO Tools (Text, CSV, HDF5, ...)
2929
===============================
3030

31-
The pandas I/O API is a set of top level ``reader`` functions accessed like
32-
:func:`pandas.read_csv` that generally return a pandas object. The corresponding
33-
``writer`` functions are object methods that are accessed like
34-
:meth:`DataFrame.to_csv`. Below is a table containing available ``readers`` and
31+
The pandas I/O API is a set of top level ``reader`` functions accessed like
32+
:func:`pandas.read_csv` that generally return a pandas object. The corresponding
33+
``writer`` functions are object methods that are accessed like
34+
:meth:`DataFrame.to_csv`. Below is a table containing available ``readers`` and
3535
``writers``.
3636

3737
.. csv-table::
@@ -74,7 +74,7 @@ intelligently convert tabular data into a ``DataFrame`` object. See the
7474
Parsing options
7575
'''''''''''''''
7676

77-
The functions :func:`read_csv` and :func:`read_table` accept the following
77+
The functions :func:`read_csv` and :func:`read_table` accept the following
7878
common arguments:
7979

8080
Basic
@@ -351,8 +351,8 @@ Error Handling
351351

352352
error_bad_lines : boolean, default ``True``
353353
Lines with too many fields (e.g. a csv line with too many commas) will by
354-
default cause an exception to be raised, and no ``DataFrame`` will be
355-
returned. If ``False``, then these "bad lines" will dropped from the
354+
default cause an exception to be raised, and no ``DataFrame`` will be
355+
returned. If ``False``, then these "bad lines" will dropped from the
356356
``DataFrame`` that is returned. See :ref:`bad lines <io.bad_lines>`
357357
below.
358358
warn_bad_lines : boolean, default ``True``
@@ -364,7 +364,7 @@ warn_bad_lines : boolean, default ``True``
364364
Specifying column data types
365365
''''''''''''''''''''''''''''
366366

367-
You can indicate the data type for the whole ``DataFrame`` or individual
367+
You can indicate the data type for the whole ``DataFrame`` or individual
368368
columns:
369369

370370
.. ipython:: python
@@ -463,7 +463,7 @@ Specifying Categorical dtype
463463
pd.read_csv(StringIO(data)).dtypes
464464
pd.read_csv(StringIO(data), dtype='category').dtypes
465465
466-
Individual columns can be parsed as a ``Categorical`` using a dict
466+
Individual columns can be parsed as a ``Categorical`` using a dict
467467
specification:
468468

469469
.. ipython:: python
@@ -562,17 +562,17 @@ If the header is in a row other than the first, pass the row number to
562562
Duplicate names parsing
563563
'''''''''''''''''''''''
564564

565-
If the file or header contains duplicate names, pandas will by default
565+
If the file or header contains duplicate names, pandas will by default
566566
distinguish between them so as to prevent overwriting data:
567567

568568
.. ipython :: python
569569
570570
data = 'a,b,a\n0,1,2\n3,4,5'
571571
pd.read_csv(StringIO(data))
572572
573-
There is no more duplicate data because ``mangle_dupe_cols=True`` by default,
574-
which modifies a series of duplicate columns 'X', ..., 'X' to become
575-
'X', 'X.1', ..., 'X.N'. If ``mangle_dupe_cols=False``, duplicate data can
573+
There is no more duplicate data because ``mangle_dupe_cols=True`` by default,
574+
which modifies a series of duplicate columns 'X', ..., 'X' to become
575+
'X', 'X.1', ..., 'X.N'. If ``mangle_dupe_cols=False``, duplicate data can
576576
arise:
577577

578578
.. code-block :: python
@@ -927,9 +927,9 @@ Note that performance-wise, you should try these methods of parsing dates in ord
927927
For optimal performance, this should be vectorized, i.e., it should accept arrays
928928
as arguments.
929929

930-
You can explore the date parsing functionality in
931-
`date_converters.py <https://github.com/pandas-dev/pandas/blob/master/pandas/io/date_converters.py>`__
932-
and add your own. We would love to turn this module into a community supported
930+
You can explore the date parsing functionality in
931+
`date_converters.py <https://github.com/pandas-dev/pandas/blob/master/pandas/io/date_converters.py>`__
932+
and add your own. We would love to turn this module into a community supported
933933
set of date/time parsers. To get you started, ``date_converters.py`` contains
934934
functions to parse dual date and time columns, year/month/day columns,
935935
and year/month/day/hour/minute/second columns. It also contains a
@@ -1073,11 +1073,11 @@ The ``thousands`` keyword allows integers to be parsed correctly:
10731073
NA Values
10741074
'''''''''
10751075

1076-
To control which values are parsed as missing values (which are signified by
1077-
``NaN``), specify a string in ``na_values``. If you specify a list of strings,
1078-
then all values in it are considered to be missing values. If you specify a
1079-
number (a ``float``, like ``5.0`` or an ``integer`` like ``5``), the
1080-
corresponding equivalent values will also imply a missing value (in this case
1076+
To control which values are parsed as missing values (which are signified by
1077+
``NaN``), specify a string in ``na_values``. If you specify a list of strings,
1078+
then all values in it are considered to be missing values. If you specify a
1079+
number (a ``float``, like ``5.0`` or an ``integer`` like ``5``), the
1080+
corresponding equivalent values will also imply a missing value (in this case
10811081
effectively ``[5.0, 5]`` are recognized as ``NaN``).
10821082

10831083
To completely override the default values that are recognized as missing, specify ``keep_default_na=False``.
@@ -1094,7 +1094,7 @@ Let us consider some examples:
10941094
read_csv(path, na_values=[5])
10951095
10961096
In the example above ``5`` and ``5.0`` will be recognized as ``NaN``, in
1097-
addition to the defaults. A string will first be interpreted as a numerical
1097+
addition to the defaults. A string will first be interpreted as a numerical
10981098
``5``, then as a ``NaN``.
10991099

11001100
.. code-block:: python
@@ -1113,7 +1113,7 @@ Above, both ``NA`` and ``0`` as strings are ``NaN``.
11131113
11141114
read_csv(path, na_values=["Nope"])
11151115
1116-
The default values, in addition to the string ``"Nope"`` are recognized as
1116+
The default values, in addition to the string ``"Nope"`` are recognized as
11171117
``NaN``.
11181118

11191119
.. _io.infinity:
@@ -1272,8 +1272,8 @@ after a delimiter:
12721272
print(data)
12731273
pd.read_csv(StringIO(data), skipinitialspace=True)
12741274
1275-
The parsers make every attempt to "do the right thing" and not be fragile. Type
1276-
inference is a pretty big deal. If a column can be coerced to integer dtype
1275+
The parsers make every attempt to "do the right thing" and not be fragile. Type
1276+
inference is a pretty big deal. If a column can be coerced to integer dtype
12771277
without altering the contents, the parser will do so. Any non-numeric
12781278
columns will come through as object dtype as with the rest of pandas objects.
12791279

@@ -1814,7 +1814,7 @@ Writing to a file, with a date index and a date column:
18141814
Fallback Behavior
18151815
+++++++++++++++++
18161816

1817-
If the JSON serializer cannot handle the container contents directly it will
1817+
If the JSON serializer cannot handle the container contents directly it will
18181818
fall back in the following manner:
18191819

18201820
- if the dtype is unsupported (e.g. ``np.complex``) then the ``default_handler``, if provided, will be called
@@ -1908,10 +1908,10 @@ overview.
19081908
Data Conversion
19091909
+++++++++++++++
19101910

1911-
The default of ``convert_axes=True``, ``dtype=True``, and ``convert_dates=True``
1912-
will try to parse the axes, and all of the data into appropriate types,
1913-
including dates. If you need to override specific dtypes, pass a dict to
1914-
``dtype``. ``convert_axes`` should only be set to ``False`` if you need to
1911+
The default of ``convert_axes=True``, ``dtype=True``, and ``convert_dates=True``
1912+
will try to parse the axes, and all of the data into appropriate types,
1913+
including dates. If you need to override specific dtypes, pass a dict to
1914+
``dtype``. ``convert_axes`` should only be set to ``False`` if you need to
19151915
preserve string-like numbers (e.g. '1', '2') in an axes.
19161916

19171917
.. note::
@@ -2675,7 +2675,7 @@ The :func:`~pandas.read_excel` method can read Excel 2003 (``.xls``) and
26752675
Excel 2007+ (``.xlsx``) files using the ``xlrd`` Python
26762676
module. The :meth:`~DataFrame.to_excel` instance method is used for
26772677
saving a ``DataFrame`` to Excel. Generally the semantics are
2678-
similar to working with :ref:`csv<io.read_csv_table>` data.
2678+
similar to working with :ref:`csv<io.read_csv_table>` data.
26792679
See the :ref:`cookbook<cookbook.excel>` for some advanced strategies.
26802680

26812681
.. _io.excel_reader:
@@ -3065,9 +3065,9 @@ The look and feel of Excel worksheets created from pandas can be modified using
30653065
Clipboard
30663066
---------
30673067

3068-
A handy way to grab data is to use the :meth:`~DataFrame.read_clipboard` method,
3069-
which takes the contents of the clipboard buffer and passes them to the
3070-
``read_table`` method. For instance, you can copy the following text to the
3068+
A handy way to grab data is to use the :meth:`~DataFrame.read_clipboard` method,
3069+
which takes the contents of the clipboard buffer and passes them to the
3070+
``read_table`` method. For instance, you can copy the following text to the
30713071
clipboard (CTRL-C on many operating systems):
30723072

30733073
.. code-block:: python
@@ -4550,7 +4550,7 @@ Several caveats.
45504550
on an attempt at serialization.
45514551

45524552
You can specify an ``engine`` to direct the serialization. This can be one of ``pyarrow``, or ``fastparquet``, or ``auto``.
4553-
If the engine is NOT specified, then the ``pd.options.io.parquet.engine`` option is checked; if this is also ``auto``,
4553+
If the engine is NOT specified, then the ``pd.options.io.parquet.engine`` option is checked; if this is also ``auto``,
45544554
then ``pyarrow`` is tried, and falling back to ``fastparquet``.
45554555

45564556
See the documentation for `pyarrow <http://arrow.apache.org/docs/python/>`__ and `fastparquet <https://fastparquet.readthedocs.io/en/latest/>`__.
@@ -5200,7 +5200,7 @@ ignored.
52005200
dtypes: float64(1), int64(1)
52015201
memory usage: 15.3 MB
52025202
5203-
When writing, the top-three functions in terms of speed are are
5203+
When writing, the top-three functions in terms of speed are are
52045204
``test_pickle_write``, ``test_feather_write`` and ``test_hdf_fixed_write_compress``.
52055205

52065206
.. code-block:: ipython

0 commit comments

Comments
 (0)