Skip to content

Commit f0feb2d

Browse files
author
datajanko
committed
reverts v0.22 and fixes code blocks and typos in v0.23
1 parent 0a27f5d commit f0feb2d

File tree

1 file changed

+9
-7
lines changed

1 file changed

+9
-7
lines changed

doc/source/whatsnew/v0.23.0.txt

+9-7
Original file line numberDiff line numberDiff line change
@@ -181,11 +181,11 @@ Please note that the string `index` is not supported with the round trip format,
181181
``.assign()`` accepts dependent arguments
182182
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
183183

184-
The :func:`DataFrame.assign()` now accepts dependent kwargs. In earlier versions this throws a Keyerror exception anymore. (:issue: `14207)
184+
The :func:`DataFrame.assign()` now accepts dependent kwargs. (:issue: `14207)
185185

186-
Specifically, defining a new column inside assign may be referenced in the same assign statement if a callable is used. For example
186+
Specifically, defining a new column inside ``.assign()`` may be referenced in the same assign statement if a callable is used. For example
187187

188-
.. code-block:: ipython
188+
.. ipython:: python
189189

190190
In [3]: df = pd.DataFrame({'A': [1, 2, 3]})
191191

@@ -199,8 +199,10 @@ Specifically, defining a new column inside assign may be referenced in the same
199199
.. warning::
200200

201201
This may subtly change the behavior of your code when you're
202-
using ``assign`` to update an existing column. Previously, callables
203-
refering to other variables being updated would get the "old" values
202+
using ``.assign()`` to update an existing column. Previously, callables
203+
referring to other variables being updated would get the "old" values
204+
205+
Previous Behaviour:
204206

205207
.. code-block:: ipython
206208

@@ -213,9 +215,9 @@ refering to other variables being updated would get the "old" values
213215
1 3 -2
214216
2 4 -3
215217

216-
Now, callables will get the "new" value
218+
New Behaviour:
217219

218-
.. code-block:: ipython
220+
.. ipython:: python
219221

220222

221223
In [4]: df = pd.DataFrame({"A": [1, 2, 3]})

0 commit comments

Comments
 (0)