|
10 | 10 |
|
11 | 11 | import pandas as pd
|
12 | 12 | from pandas import DataFrame, Series
|
| 13 | +from pandas.core.arrays import DatetimeArray, PeriodArray, TimedeltaArray |
13 | 14 | import pandas.util.testing as tm
|
14 | 15 |
|
15 | 16 |
|
| 17 | +class TestDatetimeLikeStatReductions: |
| 18 | + |
| 19 | + @pytest.mark.parametrize('box', [Series, pd.Index, DatetimeArray]) |
| 20 | + def test_dt64_mean(self, tz_naive_fixture, box): |
| 21 | + tz = tz_naive_fixture |
| 22 | + |
| 23 | + dti = pd.date_range('2001-01-01', periods=11, tz=tz) |
| 24 | + # shuffle so that we are not just working with monotone-increasing |
| 25 | + dti = dti.take([4, 1, 3, 10, 9, 7, 8, 5, 0, 2, 6]) |
| 26 | + dtarr = dti._data |
| 27 | + |
| 28 | + obj = box(dtarr) |
| 29 | + assert obj.mean() == pd.Timestamp('2001-01-06', tz=tz) |
| 30 | + assert obj.mean(skipna=False) == pd.Timestamp('2001-01-06', tz=tz) |
| 31 | + |
| 32 | + # dtarr[-2] will be the first date 2001-01-1 |
| 33 | + dtarr[-2] = pd.NaT |
| 34 | + |
| 35 | + obj = box(dtarr) |
| 36 | + assert obj.mean() == pd.Timestamp('2001-01-06 07:12:00', tz=tz) |
| 37 | + assert obj.mean(skipna=False) is pd.NaT |
| 38 | + |
| 39 | + @pytest.mark.parametrize('box', [Series, pd.Index, PeriodArray]) |
| 40 | + def test_period_mean(self, box): |
| 41 | + # GH#24757 |
| 42 | + dti = pd.date_range('2001-01-01', periods=11) |
| 43 | + # shuffle so that we are not just working with monotone-increasing |
| 44 | + dti = dti.take([4, 1, 3, 10, 9, 7, 8, 5, 0, 2, 6]) |
| 45 | + |
| 46 | + # use hourly frequency to avoid rounding errors in expected results |
| 47 | + # TODO: flesh this out with different frequencies |
| 48 | + parr = dti._data.to_period('H') |
| 49 | + obj = box(parr) |
| 50 | + with pytest.raises(TypeError, match="ambiguous"): |
| 51 | + obj.mean() |
| 52 | + with pytest.raises(TypeError, match="ambiguous"): |
| 53 | + obj.mean(skipna=True) |
| 54 | + |
| 55 | + # parr[-2] will be the first date 2001-01-1 |
| 56 | + parr[-2] = pd.NaT |
| 57 | + |
| 58 | + with pytest.raises(TypeError, match="ambiguous"): |
| 59 | + obj.mean() |
| 60 | + with pytest.raises(TypeError, match="ambiguous"): |
| 61 | + obj.mean(skipna=True) |
| 62 | + |
| 63 | + @pytest.mark.parametrize('box', [Series, pd.Index, TimedeltaArray]) |
| 64 | + def test_td64_mean(self, box): |
| 65 | + tdi = pd.TimedeltaIndex([0, 3, -2, -7, 1, 2, -1, 3, 5, -2, 4], |
| 66 | + unit='D') |
| 67 | + |
| 68 | + tdarr = tdi._data |
| 69 | + obj = box(tdarr) |
| 70 | + |
| 71 | + result = obj.mean() |
| 72 | + expected = np.array(tdarr).mean() |
| 73 | + assert result == expected |
| 74 | + |
| 75 | + tdarr[0] = pd.NaT |
| 76 | + assert obj.mean(skipna=False) is pd.NaT |
| 77 | + |
| 78 | + result2 = obj.mean(skipna=True) |
| 79 | + assert result2 == tdi[1:].mean() |
| 80 | + |
| 81 | + # exact equality fails by 1 nanosecond |
| 82 | + assert result2.round('us') == (result * 11. / 10).round('us') |
| 83 | + |
| 84 | + |
16 | 85 | class TestSeriesStatReductions:
|
17 | 86 | # Note: the name TestSeriesStatReductions indicates these tests
|
18 | 87 | # were moved from a series-specific test file, _not_ that these tests are
|
|
0 commit comments