Skip to content

Commit ee37443

Browse files
jbrockmendeltopper-123
authored andcommitted
CLN: all the things (#27647)
Thanks, @jbrockmendel.
1 parent 0fd888c commit ee37443

19 files changed

+83
-123
lines changed

pandas/_config/config.py

+2-2
Original file line numberDiff line numberDiff line change
@@ -110,7 +110,7 @@ def _set_option(*args, **kwargs):
110110
# must at least 1 arg deal with constraints later
111111
nargs = len(args)
112112
if not nargs or nargs % 2 != 0:
113-
raise ValueError("Must provide an even number of non-keyword " "arguments")
113+
raise ValueError("Must provide an even number of non-keyword arguments")
114114

115115
# default to false
116116
silent = kwargs.pop("silent", False)
@@ -395,7 +395,7 @@ class option_context:
395395
def __init__(self, *args):
396396
if not (len(args) % 2 == 0 and len(args) >= 2):
397397
raise ValueError(
398-
"Need to invoke as" " option_context(pat, val, [(pat, val), ...])."
398+
"Need to invoke as option_context(pat, val, [(pat, val), ...])."
399399
)
400400

401401
self.ops = list(zip(args[::2], args[1::2]))

pandas/compat/numpy/function.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -59,7 +59,7 @@ def __call__(self, args, kwargs, fname=None, max_fname_arg_count=None, method=No
5959
)
6060
else:
6161
raise ValueError(
62-
"invalid validation method " "'{method}'".format(method=method)
62+
"invalid validation method '{method}'".format(method=method)
6363
)
6464

6565

pandas/core/arrays/datetimes.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -496,7 +496,7 @@ def _generate_range(
496496
if start is None and end is None:
497497
if closed is not None:
498498
raise ValueError(
499-
"Closed has to be None if not both of startand end are defined"
499+
"Closed has to be None if not both of start and end are defined"
500500
)
501501
if start is NaT or end is NaT:
502502
raise ValueError("Neither `start` nor `end` can be NaT")

pandas/core/groupby/generic.py

+2-4
Original file line numberDiff line numberDiff line change
@@ -227,7 +227,7 @@ def aggregate(self, func, *args, **kwargs):
227227
kwargs = {}
228228
elif func is None:
229229
# nicer error message
230-
raise TypeError("Must provide 'func' or tuples of " "'(column, aggfunc).")
230+
raise TypeError("Must provide 'func' or tuples of '(column, aggfunc).")
231231

232232
func = _maybe_mangle_lambdas(func)
233233

@@ -836,9 +836,7 @@ def aggregate(self, func_or_funcs=None, *args, **kwargs):
836836

837837
relabeling = func_or_funcs is None
838838
columns = None
839-
no_arg_message = (
840-
"Must provide 'func_or_funcs' or named " "aggregation **kwargs."
841-
)
839+
no_arg_message = "Must provide 'func_or_funcs' or named aggregation **kwargs."
842840
if relabeling:
843841
columns = list(kwargs)
844842
if not PY36:

pandas/core/groupby/groupby.py

+5-7
Original file line numberDiff line numberDiff line change
@@ -462,7 +462,7 @@ def get_converter(s):
462462
name_sample = names[0]
463463
if isinstance(index_sample, tuple):
464464
if not isinstance(name_sample, tuple):
465-
msg = "must supply a tuple to get_group with multiple" " grouping keys"
465+
msg = "must supply a tuple to get_group with multiple grouping keys"
466466
raise ValueError(msg)
467467
if not len(name_sample) == len(index_sample):
468468
try:
@@ -715,7 +715,7 @@ def f(g):
715715

716716
else:
717717
raise ValueError(
718-
"func must be a callable if args or " "kwargs are supplied"
718+
"func must be a callable if args or kwargs are supplied"
719719
)
720720
else:
721721
f = func
@@ -1872,7 +1872,7 @@ def quantile(self, q=0.5, interpolation="linear"):
18721872
def pre_processor(vals: np.ndarray) -> Tuple[np.ndarray, Optional[Type]]:
18731873
if is_object_dtype(vals):
18741874
raise TypeError(
1875-
"'quantile' cannot be performed against " "'object' dtypes!"
1875+
"'quantile' cannot be performed against 'object' dtypes!"
18761876
)
18771877

18781878
inference = None
@@ -2201,9 +2201,7 @@ def _get_cythonized_result(
22012201
`Series` or `DataFrame` with filled values
22022202
"""
22032203
if result_is_index and aggregate:
2204-
raise ValueError(
2205-
"'result_is_index' and 'aggregate' cannot both " "be True!"
2206-
)
2204+
raise ValueError("'result_is_index' and 'aggregate' cannot both be True!")
22072205
if post_processing:
22082206
if not callable(pre_processing):
22092207
raise ValueError("'post_processing' must be a callable!")
@@ -2212,7 +2210,7 @@ def _get_cythonized_result(
22122210
raise ValueError("'pre_processing' must be a callable!")
22132211
if not needs_values:
22142212
raise ValueError(
2215-
"Cannot use 'pre_processing' without " "specifying 'needs_values'!"
2213+
"Cannot use 'pre_processing' without specifying 'needs_values'!"
22162214
)
22172215

22182216
labels, _, ngroups = grouper.group_info

pandas/core/groupby/grouper.py

+5-11
Original file line numberDiff line numberDiff line change
@@ -25,6 +25,7 @@
2525
from pandas.core.arrays import Categorical, ExtensionArray
2626
import pandas.core.common as com
2727
from pandas.core.frame import DataFrame
28+
from pandas.core.groupby.categorical import recode_for_groupby, recode_from_groupby
2829
from pandas.core.groupby.ops import BaseGrouper
2930
from pandas.core.index import CategoricalIndex, Index, MultiIndex
3031
from pandas.core.series import Series
@@ -310,8 +311,6 @@ def __init__(
310311
# a passed Categorical
311312
elif is_categorical_dtype(self.grouper):
312313

313-
from pandas.core.groupby.categorical import recode_for_groupby
314-
315314
self.grouper, self.all_grouper = recode_for_groupby(
316315
self.grouper, self.sort, observed
317316
)
@@ -361,13 +360,10 @@ def __init__(
361360
# Timestamps like
362361
if getattr(self.grouper, "dtype", None) is not None:
363362
if is_datetime64_dtype(self.grouper):
364-
from pandas import to_datetime
365-
366-
self.grouper = to_datetime(self.grouper)
363+
self.grouper = self.grouper.astype("datetime64[ns]")
367364
elif is_timedelta64_dtype(self.grouper):
368-
from pandas import to_timedelta
369365

370-
self.grouper = to_timedelta(self.grouper)
366+
self.grouper = self.grouper.astype("timedelta64[ns]")
371367

372368
def __repr__(self):
373369
return "Grouping({0})".format(self.name)
@@ -400,8 +396,6 @@ def labels(self):
400396
@cache_readonly
401397
def result_index(self):
402398
if self.all_grouper is not None:
403-
from pandas.core.groupby.categorical import recode_from_groupby
404-
405399
return recode_from_groupby(self.all_grouper, self.sort, self.group_index)
406400
return self.group_index
407401

@@ -493,12 +487,12 @@ def _get_grouper(
493487
elif nlevels == 0:
494488
raise ValueError("No group keys passed!")
495489
else:
496-
raise ValueError("multiple levels only valid with " "MultiIndex")
490+
raise ValueError("multiple levels only valid with MultiIndex")
497491

498492
if isinstance(level, str):
499493
if obj.index.name != level:
500494
raise ValueError(
501-
"level name {} is not the name of the " "index".format(level)
495+
"level name {} is not the name of the index".format(level)
502496
)
503497
elif level > 0 or level < -1:
504498
raise ValueError("level > 0 or level < -1 only valid with MultiIndex")

pandas/core/groupby/ops.py

+5-9
Original file line numberDiff line numberDiff line change
@@ -467,12 +467,12 @@ def _cython_operation(self, kind, values, how, axis, min_count=-1, **kwargs):
467467
elif is_datetime64_any_dtype(values):
468468
if how in ["add", "prod", "cumsum", "cumprod"]:
469469
raise NotImplementedError(
470-
"datetime64 type does not support {} " "operations".format(how)
470+
"datetime64 type does not support {} operations".format(how)
471471
)
472472
elif is_timedelta64_dtype(values):
473473
if how in ["prod", "cumprod"]:
474474
raise NotImplementedError(
475-
"timedelta64 type does not support {} " "operations".format(how)
475+
"timedelta64 type does not support {} operations".format(how)
476476
)
477477

478478
arity = self._cython_arity.get(how, 1)
@@ -489,7 +489,7 @@ def _cython_operation(self, kind, values, how, axis, min_count=-1, **kwargs):
489489
values = values.T
490490
if arity > 1:
491491
raise NotImplementedError(
492-
"arity of more than 1 is not " "supported for the 'how' argument"
492+
"arity of more than 1 is not supported for the 'how' argument"
493493
)
494494
out_shape = (self.ngroups,) + values.shape[1:]
495495

@@ -604,9 +604,7 @@ def _aggregate(
604604
):
605605
if values.ndim > 3:
606606
# punting for now
607-
raise NotImplementedError(
608-
"number of dimensions is currently " "limited to 3"
609-
)
607+
raise NotImplementedError("number of dimensions is currently limited to 3")
610608
elif values.ndim > 2:
611609
for i, chunk in enumerate(values.transpose(2, 0, 1)):
612610

@@ -631,9 +629,7 @@ def _transform(
631629
comp_ids, _, ngroups = self.group_info
632630
if values.ndim > 3:
633631
# punting for now
634-
raise NotImplementedError(
635-
"number of dimensions is currently " "limited to 3"
636-
)
632+
raise NotImplementedError("number of dimensions is currently limited to 3")
637633
elif values.ndim > 2:
638634
for i, chunk in enumerate(values.transpose(2, 0, 1)):
639635

pandas/core/indexes/accessors.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -340,4 +340,4 @@ def __new__(cls, data):
340340
except Exception:
341341
pass # we raise an attribute error anyway
342342

343-
raise AttributeError("Can only use .dt accessor with datetimelike " "values")
343+
raise AttributeError("Can only use .dt accessor with datetimelike values")

pandas/core/indexes/base.py

+12-20
Original file line numberDiff line numberDiff line change
@@ -376,9 +376,7 @@ def __new__(
376376
data = maybe_cast_to_integer_array(data, dtype, copy=copy)
377377
elif inferred in ["floating", "mixed-integer-float"]:
378378
if isna(data).any():
379-
raise ValueError(
380-
"cannot convert float " "NaN to integer"
381-
)
379+
raise ValueError("cannot convert float NaN to integer")
382380

383381
if inferred == "mixed-integer-float":
384382
data = maybe_cast_to_integer_array(data, dtype)
@@ -1182,7 +1180,7 @@ def summary(self, name=None):
11821180
.. deprecated:: 0.23.0
11831181
"""
11841182
warnings.warn(
1185-
"'summary' is deprecated and will be removed in a " "future version.",
1183+
"'summary' is deprecated and will be removed in a future version.",
11861184
FutureWarning,
11871185
stacklevel=2,
11881186
)
@@ -1521,7 +1519,7 @@ def _validate_index_level(self, level):
15211519
)
15221520
elif level > 0:
15231521
raise IndexError(
1524-
"Too many levels:" " Index has only 1 level, not %d" % (level + 1)
1522+
"Too many levels: Index has only 1 level, not %d" % (level + 1)
15251523
)
15261524
elif level != self.name:
15271525
raise KeyError(
@@ -2953,7 +2951,7 @@ def get_indexer(self, target, method=None, limit=None, tolerance=None):
29532951

29542952
if not self.is_unique:
29552953
raise InvalidIndexError(
2956-
"Reindexing only valid with uniquely" " valued Index objects"
2954+
"Reindexing only valid with uniquely valued Index objects"
29572955
)
29582956

29592957
if method == "pad" or method == "backfill":
@@ -2980,7 +2978,7 @@ def _convert_tolerance(self, tolerance, target):
29802978
# override this method on subclasses
29812979
tolerance = np.asarray(tolerance)
29822980
if target.size != tolerance.size and tolerance.size > 1:
2983-
raise ValueError("list-like tolerance size must match " "target index size")
2981+
raise ValueError("list-like tolerance size must match target index size")
29842982
return tolerance
29852983

29862984
def _get_fill_indexer(self, target, method, limit=None, tolerance=None):
@@ -3712,9 +3710,7 @@ def _get_leaf_sorter(labels):
37123710
return lib.get_level_sorter(lab, ensure_int64(starts))
37133711

37143712
if isinstance(self, MultiIndex) and isinstance(other, MultiIndex):
3715-
raise TypeError(
3716-
"Join on level between two MultiIndex objects " "is ambiguous"
3717-
)
3713+
raise TypeError("Join on level between two MultiIndex objects is ambiguous")
37183714

37193715
left, right = self, other
37203716

@@ -3728,7 +3724,7 @@ def _get_leaf_sorter(labels):
37283724

37293725
if not right.is_unique:
37303726
raise NotImplementedError(
3731-
"Index._join_level on non-unique index " "is not implemented"
3727+
"Index._join_level on non-unique index is not implemented"
37323728
)
37333729

37343730
new_level, left_lev_indexer, right_lev_indexer = old_level.join(
@@ -4554,9 +4550,7 @@ def sort(self, *args, **kwargs):
45544550
"""
45554551
Use sort_values instead.
45564552
"""
4557-
raise TypeError(
4558-
"cannot sort an Index object in-place, use " "sort_values instead"
4559-
)
4553+
raise TypeError("cannot sort an Index object in-place, use sort_values instead")
45604554

45614555
def shift(self, periods=1, freq=None):
45624556
"""
@@ -5205,7 +5199,7 @@ def slice_locs(self, start=None, end=None, step=None, kind=None):
52055199
pass
52065200
else:
52075201
if not tz_compare(ts_start.tzinfo, ts_end.tzinfo):
5208-
raise ValueError("Both dates must have the " "same UTC offset")
5202+
raise ValueError("Both dates must have the same UTC offset")
52095203

52105204
start_slice = None
52115205
if start is not None:
@@ -5397,12 +5391,10 @@ def _validate_for_numeric_binop(self, other, op):
53975391

53985392
if isinstance(other, (Index, ABCSeries, np.ndarray)):
53995393
if len(self) != len(other):
5400-
raise ValueError("cannot evaluate a numeric op with " "unequal lengths")
5394+
raise ValueError("cannot evaluate a numeric op with unequal lengths")
54015395
other = com.values_from_object(other)
54025396
if other.dtype.kind not in ["f", "i", "u"]:
5403-
raise TypeError(
5404-
"cannot evaluate a numeric op " "with a non-numeric dtype"
5405-
)
5397+
raise TypeError("cannot evaluate a numeric op with a non-numeric dtype")
54065398
elif isinstance(other, (ABCDateOffset, np.timedelta64, timedelta)):
54075399
# higher up to handle
54085400
pass
@@ -5571,7 +5563,7 @@ def logical_func(self, *args, **kwargs):
55715563
return logical_func
55725564

55735565
cls.all = _make_logical_function(
5574-
"all", "Return whether all elements " "are True.", np.all
5566+
"all", "Return whether all elements are True.", np.all
55755567
)
55765568
cls.any = _make_logical_function(
55775569
"any", "Return whether any element is True.", np.any

0 commit comments

Comments
 (0)