@@ -790,6 +790,19 @@ def to_pytimedelta(self) -> npt.NDArray[np.object_]:
790
790
Returns
791
791
-------
792
792
numpy.ndarray
793
+ A NumPy ``timedelta64`` object representing the same duration as the
794
+ original pandas ``Timedelta`` object. The precision of the resulting
795
+ object is in nanoseconds, which is the default
796
+ time resolution used by pandas for ``Timedelta`` objects, ensuring
797
+ high precision for time-based calculations.
798
+
799
+ See Also
800
+ --------
801
+ to_timedelta : Convert argument to timedelta format.
802
+ Timedelta : Represents a duration between two dates or times.
803
+ DatetimeIndex: Index of datetime64 data.
804
+ Timedelta.components : Return a components namedtuple-like
805
+ of a single timedelta.
793
806
794
807
Examples
795
808
--------
@@ -800,6 +813,14 @@ def to_pytimedelta(self) -> npt.NDArray[np.object_]:
800
813
>>> tdelta_idx.to_pytimedelta()
801
814
array([datetime.timedelta(days=1), datetime.timedelta(days=2),
802
815
datetime.timedelta(days=3)], dtype=object)
816
+
817
+ >>> tidx = pd.TimedeltaIndex(data=["1 days 02:30:45", "3 days 04:15:10"])
818
+ >>> tidx
819
+ TimedeltaIndex(['1 days 02:30:45', '3 days 04:15:10'],
820
+ dtype='timedelta64[ns]', freq=None)
821
+ >>> tidx.to_pytimedelta()
822
+ array([datetime.timedelta(days=1, seconds=9045),
823
+ datetime.timedelta(days=3, seconds=15310)], dtype=object)
803
824
"""
804
825
return ints_to_pytimedelta (self ._ndarray )
805
826
0 commit comments