Skip to content

Commit ebec57b

Browse files
committed
Corrected import statements and references.
1 parent e68a779 commit ebec57b

File tree

2 files changed

+71
-81
lines changed

2 files changed

+71
-81
lines changed

doc/source/whatsnew/v0.14.0.rst

+62-69
Original file line numberDiff line numberDiff line change
@@ -5,11 +5,6 @@ v0.14.0 (May 31 , 2014)
55

66
{{ header }}
77

8-
.. ipython:: python
9-
:suppress:
10-
11-
12-
138
This is a major release from 0.13.1 and includes a small number of API changes, several new features,
149
enhancements, and performance improvements along with a large number of bug fixes. We recommend that all
1510
users upgrade to this version.
@@ -63,8 +58,9 @@ API changes
6358

6459
.. ipython:: python
6560
66-
import pandas.DataFrame as DataFrame
67-
dfl = DataFrame(np.random.randn(5, 2), columns=list('AB'))
61+
import pandas as pd
62+
63+
dfl = pd.DataFrame(np.random.randn(5, 2), columns=list('AB'))
6864
dfl
6965
dfl.iloc[:, 2:3]
7066
dfl.iloc[:, 1:3]
@@ -138,13 +134,11 @@ API changes
138134
.. ipython:: python
139135
:suppress:
140136
141-
import pandas.MultiIndex as MultiIndex
142-
import pandas.Series as Series
143137
np.random.seed(1234)
144138
from itertools import product
145139
tuples = list(product(('a', 'b'), ('c', 'd')))
146-
mi = MultiIndex.from_tuples(tuples)
147-
df_multi = DataFrame(np.random.randn(4, 2), index=mi)
140+
mi = pd.MultiIndex.from_tuples(tuples)
141+
df_multi = pd.DataFrame(np.random.randn(4, 2), index=mi)
148142
tuple_ind = pd.Index(tuples, tupleize_cols=False)
149143
df_multi.index
150144
@@ -183,7 +177,7 @@ API changes
183177

184178
.. code-block:: ipython
185179
186-
In [1]: df = DataFrame(np.random.randn(10, 4), columns=list('ABCD'))
180+
In [1]: df = pd.DataFrame(np.random.randn(10, 4), columns=list('ABCD'))
187181
188182
In [4]: covs = pd.rolling_cov(df[['A', 'B', 'C']],
189183
....: df[['B', 'C', 'D']],
@@ -356,7 +350,7 @@ More consistent behaviour for some groupby methods:
356350

357351
.. ipython:: python
358352
359-
df = DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=['A', 'B'])
353+
df = pd.DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=['A', 'B'])
360354
g = df.groupby('A')
361355
g.nth(0)
362356
@@ -379,7 +373,7 @@ More consistent behaviour for some groupby methods:
379373

380374
.. ipython:: python
381375
382-
df = DataFrame([[1, np.nan], [1, 4], [5, 6], [5, 8]], columns=['A', 'B'])
376+
df = pd.DataFrame([[1, np.nan], [1, 4], [5, 6], [5, 8]], columns=['A', 'B'])
383377
g = df.groupby('A')
384378
g.count()
385379
g.describe()
@@ -388,7 +382,7 @@ More consistent behaviour for some groupby methods:
388382

389383
.. ipython:: python
390384
391-
df = DataFrame([[1, np.nan], [1, 4], [5, 6], [5, 8]], columns=['A', 'B'])
385+
df = pd.DataFrame([[1, np.nan], [1, 4], [5, 6], [5, 8]], columns=['A', 'B'])
392386
g = df.groupby('A', as_index=False)
393387
g.count()
394388
g.describe()
@@ -524,17 +518,17 @@ See also issues (:issue:`6134`, :issue:`4036`, :issue:`3057`, :issue:`2598`, :is
524518
def mklbl(prefix, n):
525519
return ["%s%s" % (prefix, i) for i in range(n)]
526520
527-
index = MultiIndex.from_product([mklbl('A', 4),
528-
mklbl('B', 2),
529-
mklbl('C', 4),
530-
mklbl('D', 2)])
531-
columns = MultiIndex.from_tuples([('a', 'foo'), ('a', 'bar'),
532-
('b', 'foo'), ('b', 'bah')],
533-
names=['lvl0', 'lvl1'])
534-
df = DataFrame(np.arange(len(index) * len(columns)).reshape((len(index),
535-
len(columns))),
536-
index=index,
537-
columns=columns).sort_index().sort_index(axis=1)
521+
index = pd.MultiIndex.from_product([mklbl('A', 4),
522+
mklbl('B', 2),
523+
mklbl('C', 4),
524+
mklbl('D', 2)])
525+
columns = pd.MultiIndex.from_tuples([('a', 'foo'), ('a', 'bar'),
526+
('b', 'foo'), ('b', 'bah')],
527+
names=['lvl0', 'lvl1'])
528+
df = pd.DataFrame(np.arange(len(index) * len(columns)).reshape((len(index),
529+
len(columns))),
530+
index=index,
531+
columns=columns).sort_index().sort_index(axis=1)
538532
df
539533
540534
Basic MultiIndex slicing using slices, lists, and labels.
@@ -682,25 +676,25 @@ Deprecations
682676
.. code-block:: ipython
683677
684678
# non-floating point indexes can only be indexed by integers / labels
685-
In [1]: Series(1, np.arange(5))[3.0]
679+
In [1]: pd.Series(1, np.arange(5))[3.0]
686680
pandas/core/index.py:469: FutureWarning: scalar indexers for index type Int64Index should be integers and not floating point
687681
Out[1]: 1
688682
689-
In [2]: Series(1, np.arange(5)).iloc[3.0]
683+
In [2]: pd.Series(1, np.arange(5)).iloc[3.0]
690684
pandas/core/index.py:469: FutureWarning: scalar indexers for index type Int64Index should be integers and not floating point
691685
Out[2]: 1
692686
693-
In [3]: Series(1, np.arange(5)).iloc[3.0:4]
687+
In [3]: pd.Series(1, np.arange(5)).iloc[3.0:4]
694688
pandas/core/index.py:527: FutureWarning: slice indexers when using iloc should be integers and not floating point
695689
Out[3]:
696690
3 1
697691
dtype: int64
698692
699693
# these are Float64Indexes, so integer or floating point is acceptable
700-
In [4]: Series(1, np.arange(5.))[3]
694+
In [4]: pd.Series(1, np.arange(5.))[3]
701695
Out[4]: 1
702696
703-
In [5]: Series(1, np.arange(5.))[3.0]
697+
In [5]: pd.Series(1, np.arange(5.))[3.0]
704698
Out[6]: 1
705699
706700
- Numpy 1.9 compat w.r.t. deprecation warnings (:issue:`6960`)
@@ -753,13 +747,13 @@ Enhancements
753747

754748
.. ipython:: python
755749
756-
Series({('a', 'b'): 1, ('a', 'a'): 0,
757-
('a', 'c'): 2, ('b', 'a'): 3, ('b', 'b'): 4})
758-
DataFrame({('a', 'b'): {('A', 'B'): 1, ('A', 'C'): 2},
759-
('a', 'a'): {('A', 'C'): 3, ('A', 'B'): 4},
760-
('a', 'c'): {('A', 'B'): 5, ('A', 'C'): 6},
761-
('b', 'a'): {('A', 'C'): 7, ('A', 'B'): 8},
762-
('b', 'b'): {('A', 'D'): 9, ('A', 'B'): 10}})
750+
pd.Series({('a', 'b'): 1, ('a', 'a'): 0,
751+
('a', 'c'): 2, ('b', 'a'): 3, ('b', 'b'): 4})
752+
pd.DataFrame({('a', 'b'): {('A', 'B'): 1, ('A', 'C'): 2},
753+
('a', 'a'): {('A', 'C'): 3, ('A', 'B'): 4},
754+
('a', 'c'): {('A', 'B'): 5, ('A', 'C'): 6},
755+
('b', 'a'): {('A', 'C'): 7, ('A', 'B'): 8},
756+
('b', 'b'): {('A', 'D'): 9, ('A', 'B'): 10}})
763757
764758
- Added the ``sym_diff`` method to ``Index`` (:issue:`5543`)
765759
- ``DataFrame.to_latex`` now takes a longtable keyword, which if True will return a table in a longtable environment. (:issue:`6617`)
@@ -772,34 +766,34 @@ Enhancements
772766

773767
.. ipython:: python
774768
775-
household = DataFrame({
776-
'household_id': [1, 2, 3],
777-
'male': [0, 1, 0],
778-
'wealth': [196087.3, 316478.7, 294750]
779-
},
780-
columns=['household_id', 'male', 'wealth']
781-
).set_index('household_id')
769+
household = pd.DataFrame({
770+
'household_id': [1, 2, 3],
771+
'male': [0, 1, 0],
772+
'wealth': [196087.3, 316478.7, 294750]
773+
},
774+
columns=['household_id', 'male', 'wealth']
775+
).set_index('household_id')
782776
household
783-
portfolio = DataFrame({
784-
'household_id': [1, 2, 2, 3, 3, 3, 4],
785-
'asset_id': ["nl0000301109",
786-
"nl0000289783",
787-
"gb00b03mlx29",
788-
"gb00b03mlx29",
789-
"lu0197800237",
790-
"nl0000289965",
791-
np.nan],
792-
'name': ["ABN Amro",
793-
"Robeco",
794-
"Royal Dutch Shell",
795-
"Royal Dutch Shell",
796-
"AAB Eastern Europe Equity Fund",
797-
"Postbank BioTech Fonds",
798-
np.nan],
799-
'share': [1.0, 0.4, 0.6, 0.15, 0.6, 0.25, 1.0]
800-
},
801-
columns=['household_id', 'asset_id', 'name', 'share']
802-
).set_index(['household_id', 'asset_id'])
777+
portfolio = pd.DataFrame({
778+
'household_id': [1, 2, 2, 3, 3, 3, 4],
779+
'asset_id': ["nl0000301109",
780+
"nl0000289783",
781+
"gb00b03mlx29",
782+
"gb00b03mlx29",
783+
"lu0197800237",
784+
"nl0000289965",
785+
np.nan],
786+
'name': ["ABN Amro",
787+
"Robeco",
788+
"Royal Dutch Shell",
789+
"Royal Dutch Shell",
790+
"AAB Eastern Europe Equity Fund",
791+
"Postbank BioTech Fonds",
792+
np.nan],
793+
'share': [1.0, 0.4, 0.6, 0.15, 0.6, 0.25, 1.0]
794+
},
795+
columns=['household_id', 'asset_id', 'name', 'share']
796+
).set_index(['household_id', 'asset_id'])
803797
portfolio
804798
805799
household.join(portfolio, how='inner')
@@ -834,7 +828,7 @@ Enhancements
834828
.. ipython:: python
835829
836830
import datetime
837-
df = DataFrame({
831+
df = pd.DataFrame({
838832
'Branch' : 'A A A A A B'.split(),
839833
'Buyer': 'Carl Mark Carl Carl Joe Joe'.split(),
840834
'Quantity': [1, 3, 5, 1, 8, 1],
@@ -857,9 +851,8 @@ Enhancements
857851

858852
.. ipython:: python
859853
860-
import pandas.period_range as period_range
861-
prng = period_range('2013-01-01 09:00', periods=100, freq='H')
862-
ps = Series(np.random.randn(len(prng)), index=prng)
854+
prng = pd.period_range('2013-01-01 09:00', periods=100, freq='H')
855+
ps = pd.Series(np.random.randn(len(prng)), index=prng)
863856
ps
864857
ps['2013-01-02']
865858

doc/source/whatsnew/v0.14.1.rst

+9-12
Original file line numberDiff line numberDiff line change
@@ -5,10 +5,6 @@ v0.14.1 (July 11, 2014)
55

66
{{ header }}
77

8-
.. ipython:: python
9-
:suppress:
10-
11-
128
This is a minor release from 0.14.0 and includes a small number of API changes, several new features,
139
enhancements, and performance improvements along with a large number of bug fixes. We recommend that all
1410
users upgrade to this version.
@@ -56,13 +52,15 @@ API changes
5652

5753
.. code-block:: ipython
5854
55+
In [5]: import pandas as pd
56+
5957
In [6]: from pandas.tseries import offsets
6058
6159
In [7]: d = pd.Timestamp('2014-01-01 09:00')
6260
6361
# old behaviour < 0.14.1
6462
In [8]: d + offsets.MonthEnd()
65-
Out[8]: Timestamp('2014-01-31 00:00:00')
63+
Out[8]: pd.Timestamp('2014-01-31 00:00:00')
6664
6765
Starting from 0.14.1 all offsets preserve time by default. The old
6866
behaviour can be obtained with ``normalize=True``
@@ -100,14 +98,15 @@ Enhancements
10098

10199
.. code-block:: python
102100
101+
import pandas as pd
103102
import pandas.tseries.offsets as offsets
104-
import pandas.Timestamp as Timestamp
103+
105104
106105
day = offsets.Day()
107-
day.apply(Timestamp('2014-01-01 09:00'))
106+
day.apply(pd.Timestamp('2014-01-01 09:00'))
108107
109108
day = offsets.Day(normalize=True)
110-
day.apply(Timestamp('2014-01-01 09:00'))
109+
day.apply(pd.Timestamp('2014-01-01 09:00'))
111110
112111
- ``PeriodIndex`` is represented as the same format as ``DatetimeIndex`` (:issue:`7601`)
113112
- ``StringMethods`` now work on empty Series (:issue:`7242`)
@@ -126,10 +125,8 @@ Enhancements
126125
pytz timezones across pandas. (:issue:`4688`)
127126

128127
.. ipython:: python
129-
import pandas.date_range
130-
131-
rng = pandas.date_range('3/6/2012 00:00', periods=10, freq='D',
132-
tz='dateutil/Europe/London')
128+
rng = pd.date_range('3/6/2012 00:00', periods=10, freq='D',
129+
tz='dateutil/Europe/London')
133130
rng.tz
134131
135132
See :ref:`the docs <timeseries.timezone>`.

0 commit comments

Comments
 (0)