Skip to content

Commit ea477c6

Browse files
author
jl_win_a
committed
DOC: standardize class references in SPSS guide
1 parent 5993f24 commit ea477c6

File tree

1 file changed

+18
-18
lines changed

1 file changed

+18
-18
lines changed

doc/source/getting_started/comparison/comparison_with_spss.rst

Lines changed: 18 additions & 18 deletions
Original file line numberDiff line numberDiff line change
@@ -19,37 +19,37 @@ General terminology translation
1919
:header: "pandas", "SPSS"
2020
:widths: 20, 20
2121

22-
``DataFrame``, data file
22+
:class:`DataFrame`, data file
2323
column, variable
2424
row, case
2525
groupby, split file
26-
``NaN``, system-missing
26+
:class:`NaN`, system-missing
2727

28-
``DataFrame``
28+
:class:`DataFrame`
2929
~~~~~~~~~~~~~
3030

31-
A ``DataFrame`` in pandas is analogous to an SPSS data file - a two-dimensional
31+
A :class:`DataFrame` in pandas is analogous to an SPSS data file - a two-dimensional
3232
data source with labeled columns that can be of different types. As will be shown in this
3333
document, almost any operation that can be performed in SPSS can also be accomplished in pandas.
3434

35-
``Series``
35+
:class:`Series`
3636
~~~~~~~~~~
3737

38-
A ``Series`` is the data structure that represents one column of a ``DataFrame``. SPSS doesn't have a
39-
separate data structure for a single variable, but in general, working with a ``Series`` is analogous
38+
A :class:`Series` is the data structure that represents one column of a :class:`DataFrame`. SPSS doesn't have a
39+
separate data structure for a single variable, but in general, working with a :class:`Series` is analogous
4040
to working with a variable in SPSS.
4141

42-
``Index``
42+
:class:`Index`
4343
~~~~~~~~~
4444

45-
Every ``DataFrame`` and ``Series`` has an ``Index`` -- labels on the *rows* of the data. SPSS does not
45+
Every :class:`DataFrame` and :class:`Series` has an :class:`Index` -- labels on the *rows* of the data. SPSS does not
4646
have an exact analogue, as cases are simply numbered sequentially from 1. In pandas, if no index is
47-
specified, a ``RangeIndex`` is used by default (first row = 0, second row = 1, and so on).
47+
specified, a :class:`RangeIndex` is used by default (first row = 0, second row = 1, and so on).
4848

49-
While using a labeled ``Index`` or ``MultiIndex`` can enable sophisticated analyses and is ultimately an
50-
important part of pandas to understand, for this comparison we will essentially ignore the ``Index`` and
51-
just treat the ``DataFrame`` as a collection of columns. Please see the :ref:`indexing documentation<indexing>`
52-
for much more on how to use an ``Index`` effectively.
49+
While using a labeled :class:`Index` or :class:`MultiIndex` can enable sophisticated analyses and is ultimately an
50+
important part of pandas to understand, for this comparison we will essentially ignore the :class:`Index` and
51+
just treat the :class:`DataFrame` as a collection of columns. Please see the :ref:`indexing documentation<indexing>`
52+
for much more on how to use an :class:`Index` effectively.
5353

5454

5555
Copies vs. in place operations
@@ -81,7 +81,7 @@ In SPSS, you would use File > Open > Data to import a CSV file:
8181
8282
The pandas equivalent would use :func:`read_csv`:
8383

84-
.. ipython:: python
84+
.. code-block:: python
8585
8686
url = (
8787
"https://raw.githubusercontent.com/pandas-dev"
@@ -116,7 +116,7 @@ In SPSS, filtering is done through Data > Select Cases:
116116
117117
In pandas, boolean indexing can be used:
118118

119-
.. ipython:: python
119+
.. code-block:: python
120120
121121
tips[tips["total_bill"] > 10]
122122
@@ -133,7 +133,7 @@ In SPSS, sorting is done through Data > Sort Cases:
133133
134134
In pandas, this would be written as:
135135

136-
.. ipython:: python
136+
.. code-block:: python
137137
138138
tips.sort_values(["sex", "total_bill"])
139139
@@ -194,7 +194,7 @@ In SPSS, split-file analysis is done through Data > Split File:
194194
195195
The pandas equivalent would be:
196196

197-
.. ipython:: python
197+
.. code-block:: python
198198
199199
tips.groupby("sex")[["total_bill", "tip"]].agg(["mean", "std", "min", "max"])
200200

0 commit comments

Comments
 (0)