Skip to content

Commit e84c3f9

Browse files
authored
De-privatize names (#33227)
1 parent 27ffac4 commit e84c3f9

File tree

19 files changed

+102
-102
lines changed

19 files changed

+102
-102
lines changed

pandas/_libs/tslibs/conversion.pyx

+5-5
Original file line numberDiff line numberDiff line change
@@ -44,8 +44,8 @@ from pandas._libs.tslibs.tzconversion cimport (
4444
# ----------------------------------------------------------------------
4545
# Constants
4646

47-
NS_DTYPE = np.dtype('M8[ns]')
48-
TD_DTYPE = np.dtype('m8[ns]')
47+
DT64NS_DTYPE = np.dtype('M8[ns]')
48+
TD64NS_DTYPE = np.dtype('m8[ns]')
4949

5050

5151
# ----------------------------------------------------------------------
@@ -105,11 +105,11 @@ def ensure_datetime64ns(arr: ndarray, copy: bool=True):
105105

106106
ivalues = arr.view(np.int64).ravel()
107107

108-
result = np.empty(shape, dtype=NS_DTYPE)
108+
result = np.empty(shape, dtype=DT64NS_DTYPE)
109109
iresult = result.ravel().view(np.int64)
110110

111111
if len(iresult) == 0:
112-
result = arr.view(NS_DTYPE)
112+
result = arr.view(DT64NS_DTYPE)
113113
if copy:
114114
result = result.copy()
115115
return result
@@ -145,7 +145,7 @@ def ensure_timedelta64ns(arr: ndarray, copy: bool=True):
145145
result : ndarray with dtype timedelta64[ns]
146146
147147
"""
148-
return arr.astype(TD_DTYPE, copy=copy)
148+
return arr.astype(TD64NS_DTYPE, copy=copy)
149149
# TODO: check for overflows when going from a lower-resolution to nanos
150150

151151

pandas/core/arrays/categorical.py

+9-9
Original file line numberDiff line numberDiff line change
@@ -378,7 +378,7 @@ def __init__(
378378
old_codes = (
379379
values._values.codes if isinstance(values, ABCSeries) else values.codes
380380
)
381-
codes = _recode_for_categories(
381+
codes = recode_for_categories(
382382
old_codes, values.dtype.categories, dtype.categories
383383
)
384384

@@ -572,13 +572,13 @@ def _from_inferred_categories(
572572
if known_categories:
573573
# Recode from observation order to dtype.categories order.
574574
categories = dtype.categories
575-
codes = _recode_for_categories(inferred_codes, cats, categories)
575+
codes = recode_for_categories(inferred_codes, cats, categories)
576576
elif not cats.is_monotonic_increasing:
577577
# Sort categories and recode for unknown categories.
578578
unsorted = cats.copy()
579579
categories = cats.sort_values()
580580

581-
codes = _recode_for_categories(inferred_codes, unsorted, categories)
581+
codes = recode_for_categories(inferred_codes, unsorted, categories)
582582
dtype = CategoricalDtype(categories, ordered=False)
583583
else:
584584
dtype = CategoricalDtype(cats, ordered=False)
@@ -727,7 +727,7 @@ def _set_dtype(self, dtype: CategoricalDtype) -> "Categorical":
727727
We don't do any validation here. It's assumed that the dtype is
728728
a (valid) instance of `CategoricalDtype`.
729729
"""
730-
codes = _recode_for_categories(self.codes, self.categories, dtype.categories)
730+
codes = recode_for_categories(self.codes, self.categories, dtype.categories)
731731
return type(self)(codes, dtype=dtype, fastpath=True)
732732

733733
def set_ordered(self, value, inplace=False):
@@ -849,7 +849,7 @@ def set_categories(self, new_categories, ordered=None, rename=False, inplace=Fal
849849
# remove all _codes which are larger and set to -1/NaN
850850
cat._codes[cat._codes >= len(new_dtype.categories)] = -1
851851
else:
852-
codes = _recode_for_categories(
852+
codes = recode_for_categories(
853853
cat.codes, cat.categories, new_dtype.categories
854854
)
855855
cat._codes = codes
@@ -2034,7 +2034,7 @@ def __setitem__(self, key, value):
20342034
"without identical categories"
20352035
)
20362036
if not self.categories.equals(value.categories):
2037-
new_codes = _recode_for_categories(
2037+
new_codes = recode_for_categories(
20382038
value.codes, value.categories, self.categories
20392039
)
20402040
value = Categorical.from_codes(new_codes, dtype=self.dtype)
@@ -2298,7 +2298,7 @@ def equals(self, other):
22982298
# fastpath to avoid re-coding
22992299
other_codes = other._codes
23002300
else:
2301-
other_codes = _recode_for_categories(
2301+
other_codes = recode_for_categories(
23022302
other.codes, other.categories, self.categories
23032303
)
23042304
return np.array_equal(self._codes, other_codes)
@@ -2667,7 +2667,7 @@ def _get_codes_for_values(values, categories):
26672667
return coerce_indexer_dtype(t.lookup(vals), cats)
26682668

26692669

2670-
def _recode_for_categories(codes: np.ndarray, old_categories, new_categories):
2670+
def recode_for_categories(codes: np.ndarray, old_categories, new_categories):
26712671
"""
26722672
Convert a set of codes for to a new set of categories
26732673
@@ -2685,7 +2685,7 @@ def _recode_for_categories(codes: np.ndarray, old_categories, new_categories):
26852685
>>> old_cat = pd.Index(['b', 'a', 'c'])
26862686
>>> new_cat = pd.Index(['a', 'b'])
26872687
>>> codes = np.array([0, 1, 1, 2])
2688-
>>> _recode_for_categories(codes, old_cat, new_cat)
2688+
>>> recode_for_categories(codes, old_cat, new_cat)
26892689
array([ 1, 0, 0, -1], dtype=int8)
26902690
"""
26912691
if len(old_categories) == 0:

pandas/core/arrays/datetimes.py

+15-15
Original file line numberDiff line numberDiff line change
@@ -22,7 +22,7 @@
2222

2323
from pandas.core.dtypes.common import (
2424
_INT64_DTYPE,
25-
_NS_DTYPE,
25+
DT64NS_DTYPE,
2626
is_bool_dtype,
2727
is_categorical_dtype,
2828
is_datetime64_any_dtype,
@@ -66,7 +66,7 @@ def tz_to_dtype(tz):
6666
np.dtype or Datetime64TZDType
6767
"""
6868
if tz is None:
69-
return _NS_DTYPE
69+
return DT64NS_DTYPE
7070
else:
7171
return DatetimeTZDtype(tz=tz)
7272

@@ -209,7 +209,7 @@ class DatetimeArray(dtl.DatetimeLikeArrayMixin, dtl.TimelikeOps, dtl.DatelikeOps
209209
_dtype: Union[np.dtype, DatetimeTZDtype]
210210
_freq = None
211211

212-
def __init__(self, values, dtype=_NS_DTYPE, freq=None, copy=False):
212+
def __init__(self, values, dtype=DT64NS_DTYPE, freq=None, copy=False):
213213
if isinstance(values, (ABCSeries, ABCIndexClass)):
214214
values = values._values
215215

@@ -246,9 +246,9 @@ def __init__(self, values, dtype=_NS_DTYPE, freq=None, copy=False):
246246
# for compat with datetime/timedelta/period shared methods,
247247
# we can sometimes get here with int64 values. These represent
248248
# nanosecond UTC (or tz-naive) unix timestamps
249-
values = values.view(_NS_DTYPE)
249+
values = values.view(DT64NS_DTYPE)
250250

251-
if values.dtype != _NS_DTYPE:
251+
if values.dtype != DT64NS_DTYPE:
252252
raise ValueError(
253253
"The dtype of 'values' is incorrect. Must be 'datetime64[ns]'. "
254254
f"Got {values.dtype} instead."
@@ -282,11 +282,11 @@ def __init__(self, values, dtype=_NS_DTYPE, freq=None, copy=False):
282282
type(self)._validate_frequency(self, freq)
283283

284284
@classmethod
285-
def _simple_new(cls, values, freq=None, dtype=_NS_DTYPE):
285+
def _simple_new(cls, values, freq=None, dtype=DT64NS_DTYPE):
286286
assert isinstance(values, np.ndarray)
287-
if values.dtype != _NS_DTYPE:
287+
if values.dtype != DT64NS_DTYPE:
288288
assert values.dtype == "i8"
289-
values = values.view(_NS_DTYPE)
289+
values = values.view(DT64NS_DTYPE)
290290

291291
result = object.__new__(cls)
292292
result._data = values
@@ -970,7 +970,7 @@ def tz_localize(self, tz, ambiguous="raise", nonexistent="raise"):
970970
new_dates = conversion.tz_localize_to_utc(
971971
self.asi8, tz, ambiguous=ambiguous, nonexistent=nonexistent
972972
)
973-
new_dates = new_dates.view(_NS_DTYPE)
973+
new_dates = new_dates.view(DT64NS_DTYPE)
974974
dtype = tz_to_dtype(tz)
975975
return self._simple_new(new_dates, dtype=dtype, freq=self.freq)
976976

@@ -1751,7 +1751,7 @@ def sequence_to_dt64ns(
17511751
elif is_datetime64_dtype(data):
17521752
# tz-naive DatetimeArray or ndarray[datetime64]
17531753
data = getattr(data, "_data", data)
1754-
if data.dtype != _NS_DTYPE:
1754+
if data.dtype != DT64NS_DTYPE:
17551755
data = conversion.ensure_datetime64ns(data)
17561756

17571757
if tz is not None:
@@ -1760,9 +1760,9 @@ def sequence_to_dt64ns(
17601760
data = conversion.tz_localize_to_utc(
17611761
data.view("i8"), tz, ambiguous=ambiguous
17621762
)
1763-
data = data.view(_NS_DTYPE)
1763+
data = data.view(DT64NS_DTYPE)
17641764

1765-
assert data.dtype == _NS_DTYPE, data.dtype
1765+
assert data.dtype == DT64NS_DTYPE, data.dtype
17661766
result = data
17671767

17681768
else:
@@ -1773,7 +1773,7 @@ def sequence_to_dt64ns(
17731773

17741774
if data.dtype != _INT64_DTYPE:
17751775
data = data.astype(np.int64, copy=False)
1776-
result = data.view(_NS_DTYPE)
1776+
result = data.view(DT64NS_DTYPE)
17771777

17781778
if copy:
17791779
# TODO: should this be deepcopy?
@@ -1897,7 +1897,7 @@ def maybe_convert_dtype(data, copy):
18971897
if is_float_dtype(data.dtype):
18981898
# Note: we must cast to datetime64[ns] here in order to treat these
18991899
# as wall-times instead of UTC timestamps.
1900-
data = data.astype(_NS_DTYPE)
1900+
data = data.astype(DT64NS_DTYPE)
19011901
copy = False
19021902
# TODO: deprecate this behavior to instead treat symmetrically
19031903
# with integer dtypes. See discussion in GH#23675
@@ -1994,7 +1994,7 @@ def _validate_dt64_dtype(dtype):
19941994
)
19951995
raise ValueError(msg)
19961996

1997-
if (isinstance(dtype, np.dtype) and dtype != _NS_DTYPE) or not isinstance(
1997+
if (isinstance(dtype, np.dtype) and dtype != DT64NS_DTYPE) or not isinstance(
19981998
dtype, (np.dtype, DatetimeTZDtype)
19991999
):
20002000
raise ValueError(

pandas/core/arrays/period.py

+3-3
Original file line numberDiff line numberDiff line change
@@ -23,7 +23,7 @@
2323
from pandas.util._decorators import cache_readonly
2424

2525
from pandas.core.dtypes.common import (
26-
_TD_DTYPE,
26+
TD64NS_DTYPE,
2727
ensure_object,
2828
is_datetime64_dtype,
2929
is_float_dtype,
@@ -718,10 +718,10 @@ def _check_timedeltalike_freq_compat(self, other):
718718
elif isinstance(other, np.ndarray):
719719
# numpy timedelta64 array; all entries must be compatible
720720
assert other.dtype.kind == "m"
721-
if other.dtype != _TD_DTYPE:
721+
if other.dtype != TD64NS_DTYPE:
722722
# i.e. non-nano unit
723723
# TODO: disallow unit-less timedelta64
724-
other = other.astype(_TD_DTYPE)
724+
other = other.astype(TD64NS_DTYPE)
725725
nanos = other.view("i8")
726726
else:
727727
# TimedeltaArray/Index

pandas/core/arrays/timedeltas.py

+15-15
Original file line numberDiff line numberDiff line change
@@ -14,8 +14,8 @@
1414
from pandas.compat.numpy import function as nv
1515

1616
from pandas.core.dtypes.common import (
17-
_NS_DTYPE,
18-
_TD_DTYPE,
17+
DT64NS_DTYPE,
18+
TD64NS_DTYPE,
1919
is_dtype_equal,
2020
is_float_dtype,
2121
is_integer_dtype,
@@ -136,12 +136,12 @@ def dtype(self):
136136
-------
137137
numpy.dtype
138138
"""
139-
return _TD_DTYPE
139+
return TD64NS_DTYPE
140140

141141
# ----------------------------------------------------------------
142142
# Constructors
143143

144-
def __init__(self, values, dtype=_TD_DTYPE, freq=None, copy=False):
144+
def __init__(self, values, dtype=TD64NS_DTYPE, freq=None, copy=False):
145145
values = extract_array(values)
146146

147147
inferred_freq = getattr(values, "_freq", None)
@@ -167,7 +167,7 @@ def __init__(self, values, dtype=_TD_DTYPE, freq=None, copy=False):
167167
# for compat with datetime/timedelta/period shared methods,
168168
# we can sometimes get here with int64 values. These represent
169169
# nanosecond UTC (or tz-naive) unix timestamps
170-
values = values.view(_TD_DTYPE)
170+
values = values.view(TD64NS_DTYPE)
171171

172172
_validate_td64_dtype(values.dtype)
173173
dtype = _validate_td64_dtype(dtype)
@@ -192,21 +192,21 @@ def __init__(self, values, dtype=_TD_DTYPE, freq=None, copy=False):
192192
type(self)._validate_frequency(self, freq)
193193

194194
@classmethod
195-
def _simple_new(cls, values, freq=None, dtype=_TD_DTYPE):
196-
assert dtype == _TD_DTYPE, dtype
195+
def _simple_new(cls, values, freq=None, dtype=TD64NS_DTYPE):
196+
assert dtype == TD64NS_DTYPE, dtype
197197
assert isinstance(values, np.ndarray), type(values)
198-
if values.dtype != _TD_DTYPE:
198+
if values.dtype != TD64NS_DTYPE:
199199
assert values.dtype == "i8"
200-
values = values.view(_TD_DTYPE)
200+
values = values.view(TD64NS_DTYPE)
201201

202202
result = object.__new__(cls)
203203
result._data = values
204204
result._freq = to_offset(freq)
205-
result._dtype = _TD_DTYPE
205+
result._dtype = TD64NS_DTYPE
206206
return result
207207

208208
@classmethod
209-
def _from_sequence(cls, data, dtype=_TD_DTYPE, copy=False, freq=None, unit=None):
209+
def _from_sequence(cls, data, dtype=TD64NS_DTYPE, copy=False, freq=None, unit=None):
210210
if dtype:
211211
_validate_td64_dtype(dtype)
212212
freq, freq_infer = dtl.maybe_infer_freq(freq)
@@ -428,7 +428,7 @@ def _add_datetimelike_scalar(self, other):
428428
i8 = self.asi8
429429
result = checked_add_with_arr(i8, other.value, arr_mask=self._isnan)
430430
result = self._maybe_mask_results(result)
431-
dtype = DatetimeTZDtype(tz=other.tz) if other.tz else _NS_DTYPE
431+
dtype = DatetimeTZDtype(tz=other.tz) if other.tz else DT64NS_DTYPE
432432
return DatetimeArray(result, dtype=dtype, freq=self.freq)
433433

434434
def _addsub_object_array(self, other, op):
@@ -950,10 +950,10 @@ def sequence_to_td64ns(data, copy=False, unit="ns", errors="raise"):
950950
copy = False
951951

952952
elif is_timedelta64_dtype(data.dtype):
953-
if data.dtype != _TD_DTYPE:
953+
if data.dtype != TD64NS_DTYPE:
954954
# non-nano unit
955955
# TODO: watch out for overflows
956-
data = data.astype(_TD_DTYPE)
956+
data = data.astype(TD64NS_DTYPE)
957957
copy = False
958958

959959
else:
@@ -1051,7 +1051,7 @@ def _validate_td64_dtype(dtype):
10511051
)
10521052
raise ValueError(msg)
10531053

1054-
if not is_dtype_equal(dtype, _TD_DTYPE):
1054+
if not is_dtype_equal(dtype, TD64NS_DTYPE):
10551055
raise ValueError(f"dtype {dtype} cannot be converted to timedelta64[ns]")
10561056

10571057
return dtype

0 commit comments

Comments
 (0)