@@ -2056,6 +2056,37 @@ def drop(self, labels, axis=0, level=None, inplace=False, errors='raise'):
2056
2056
Returns
2057
2057
-------
2058
2058
dropped : type of caller
2059
+
2060
+ Examples
2061
+ --------
2062
+ >>> df = pd.DataFrame([[1, 2, 3, 4],
2063
+ ... [5, 6, 7, 8],
2064
+ ... [9, 1, 2, 3],
2065
+ ... [4, 5, 6, 7]
2066
+ ... ],
2067
+ ... columns=list('ABCD'))
2068
+ >>> df
2069
+ A B C D
2070
+ 0 1 2 3 4
2071
+ 1 5 6 7 8
2072
+ 2 9 1 2 3
2073
+ 3 4 5 6 7
2074
+
2075
+ Drop a row by index
2076
+
2077
+ >>> df.drop([0, 1])
2078
+ A B C D
2079
+ 2 9 1 2 3
2080
+ 3 4 5 6 7
2081
+
2082
+ Drop columns
2083
+
2084
+ >>> df.drop(['A', 'B'], axis=1)
2085
+ C D
2086
+ 0 3 4
2087
+ 1 7 8
2088
+ 2 2 3
2089
+ 3 6 7
2059
2090
"""
2060
2091
inplace = validate_bool_kwarg (inplace , 'inplace' )
2061
2092
axis = self ._get_axis_number (axis )
@@ -2169,6 +2200,66 @@ def add_suffix(self, suffix):
2169
2200
Returns
2170
2201
-------
2171
2202
sorted_obj : %(klass)s
2203
+
2204
+ Examples
2205
+ --------
2206
+ >>> df = pd.DataFrame({
2207
+ ... 'col1' : ['A', 'A', 'B', np.nan, 'D', 'C'],
2208
+ ... 'col2' : [2, 1, 9, 8, 7, 4],
2209
+ ... 'col3': [0, 1, 9, 4, 2, 3],
2210
+ ... })
2211
+ >>> df
2212
+ col1 col2 col3
2213
+ 0 A 2 0
2214
+ 1 A 1 1
2215
+ 2 B 9 9
2216
+ 3 NaN 8 4
2217
+ 4 D 7 2
2218
+ 5 C 4 3
2219
+
2220
+ Sort by col1
2221
+
2222
+ >>> df.sort_values(by=['col1'])
2223
+ col1 col2 col3
2224
+ 0 A 2 0
2225
+ 1 A 1 1
2226
+ 2 B 9 9
2227
+ 5 C 4 3
2228
+ 4 D 7 2
2229
+ 3 NaN 8 4
2230
+
2231
+ Sort by multiple columns
2232
+
2233
+ >>> df.sort_values(by=['col1', 'col2'])
2234
+ col1 col2 col3
2235
+ 1 A 1 1
2236
+ 0 A 2 0
2237
+ 2 B 9 9
2238
+ 5 C 4 3
2239
+ 4 D 7 2
2240
+ 3 NaN 8 4
2241
+
2242
+ Sort Descending
2243
+
2244
+ >>> df.sort_values(by='col1', ascending=False)
2245
+ col1 col2 col3
2246
+ 4 D 7 2
2247
+ 5 C 4 3
2248
+ 2 B 9 9
2249
+ 0 A 2 0
2250
+ 1 A 1 1
2251
+ 3 NaN 8 4
2252
+
2253
+ Putting NAs first
2254
+
2255
+ >>> df.sort_values(by='col1', ascending=False, na_position='first')
2256
+ col1 col2 col3
2257
+ 3 NaN 8 4
2258
+ 4 D 7 2
2259
+ 5 C 4 3
2260
+ 2 B 9 9
2261
+ 0 A 2 0
2262
+ 1 A 1 1
2172
2263
"""
2173
2264
2174
2265
def sort_values (self , by , axis = 0 , ascending = True , inplace = False ,
@@ -3469,6 +3560,58 @@ def convert_objects(self, convert_dates=True, convert_numeric=False,
3469
3560
Returns
3470
3561
-------
3471
3562
filled : %(klass)s
3563
+
3564
+ Examples
3565
+ --------
3566
+ >>> df = pd.DataFrame([[np.nan, 2, np.nan, 0],
3567
+ ... [3, 4, np.nan, 1],
3568
+ ... [np.nan, np.nan, np.nan, 5],
3569
+ ... [np.nan, 3, np.nan, 4]],
3570
+ ... columns=list('ABCD'))
3571
+ >>> df
3572
+ A B C D
3573
+ 0 NaN 2.0 NaN 0
3574
+ 1 3.0 4.0 NaN 1
3575
+ 2 NaN NaN NaN 5
3576
+ 3 NaN 3.0 NaN 4
3577
+
3578
+ Replace all NaN elements with 0s.
3579
+
3580
+ >>> df.fillna(0)
3581
+ A B C D
3582
+ 0 0.0 2.0 0.0 0
3583
+ 1 3.0 4.0 0.0 1
3584
+ 2 0.0 0.0 0.0 5
3585
+ 3 0.0 3.0 0.0 4
3586
+
3587
+ We can also propagate non-null values forward or backward.
3588
+
3589
+ >>> df.fillna(method='ffill')
3590
+ A B C D
3591
+ 0 NaN 2.0 NaN 0
3592
+ 1 3.0 4.0 NaN 1
3593
+ 2 3.0 4.0 NaN 5
3594
+ 3 3.0 3.0 NaN 4
3595
+
3596
+ Replace all NaN elements in column 'A', 'B', 'C', and 'D', with 0, 1,
3597
+ 2, and 3 respectively.
3598
+
3599
+ >>> values = {'A': 0, 'B': 1, 'C': 2, 'D': 3}
3600
+ >>> df.fillna(value=values)
3601
+ A B C D
3602
+ 0 0.0 2.0 2.0 0
3603
+ 1 3.0 4.0 2.0 1
3604
+ 2 0.0 1.0 2.0 5
3605
+ 3 0.0 3.0 2.0 4
3606
+
3607
+ Only replace the first NaN element.
3608
+
3609
+ >>> df.fillna(value=values, limit=1)
3610
+ A B C D
3611
+ 0 0.0 2.0 2.0 0
3612
+ 1 3.0 4.0 NaN 1
3613
+ 2 NaN 1.0 NaN 5
3614
+ 3 NaN 3.0 NaN 4
3472
3615
""" )
3473
3616
3474
3617
@Appender (_shared_docs ['fillna' ] % _shared_doc_kwargs )
0 commit comments