|
| 1 | +import numpy as np |
| 2 | +import pytest |
| 3 | + |
| 4 | +import pandas as pd |
| 5 | +from pandas import DataFrame, Series |
| 6 | +import pandas.util.testing as tm |
| 7 | + |
| 8 | + |
| 9 | +class TestDataFrameClip: |
| 10 | + def test_clip(self, float_frame): |
| 11 | + median = float_frame.median().median() |
| 12 | + original = float_frame.copy() |
| 13 | + |
| 14 | + double = float_frame.clip(upper=median, lower=median) |
| 15 | + assert not (double.values != median).any() |
| 16 | + |
| 17 | + # Verify that float_frame was not changed inplace |
| 18 | + assert (float_frame.values == original.values).all() |
| 19 | + |
| 20 | + def test_inplace_clip(self, float_frame): |
| 21 | + # GH#15388 |
| 22 | + median = float_frame.median().median() |
| 23 | + frame_copy = float_frame.copy() |
| 24 | + |
| 25 | + frame_copy.clip(upper=median, lower=median, inplace=True) |
| 26 | + assert not (frame_copy.values != median).any() |
| 27 | + |
| 28 | + def test_dataframe_clip(self): |
| 29 | + # GH#2747 |
| 30 | + df = DataFrame(np.random.randn(1000, 2)) |
| 31 | + |
| 32 | + for lb, ub in [(-1, 1), (1, -1)]: |
| 33 | + clipped_df = df.clip(lb, ub) |
| 34 | + |
| 35 | + lb, ub = min(lb, ub), max(ub, lb) |
| 36 | + lb_mask = df.values <= lb |
| 37 | + ub_mask = df.values >= ub |
| 38 | + mask = ~lb_mask & ~ub_mask |
| 39 | + assert (clipped_df.values[lb_mask] == lb).all() |
| 40 | + assert (clipped_df.values[ub_mask] == ub).all() |
| 41 | + assert (clipped_df.values[mask] == df.values[mask]).all() |
| 42 | + |
| 43 | + def test_clip_mixed_numeric(self): |
| 44 | + # TODO(jreback) |
| 45 | + # clip on mixed integer or floats |
| 46 | + # with integer clippers coerces to float |
| 47 | + df = DataFrame({"A": [1, 2, 3], "B": [1.0, np.nan, 3.0]}) |
| 48 | + result = df.clip(1, 2) |
| 49 | + expected = DataFrame({"A": [1, 2, 2], "B": [1.0, np.nan, 2.0]}) |
| 50 | + tm.assert_frame_equal(result, expected, check_like=True) |
| 51 | + |
| 52 | + # GH#24162, clipping now preserves numeric types per column |
| 53 | + df = DataFrame([[1, 2, 3.4], [3, 4, 5.6]], columns=["foo", "bar", "baz"]) |
| 54 | + expected = df.dtypes |
| 55 | + result = df.clip(upper=3).dtypes |
| 56 | + tm.assert_series_equal(result, expected) |
| 57 | + |
| 58 | + @pytest.mark.parametrize("inplace", [True, False]) |
| 59 | + def test_clip_against_series(self, inplace): |
| 60 | + # GH#6966 |
| 61 | + |
| 62 | + df = DataFrame(np.random.randn(1000, 2)) |
| 63 | + lb = Series(np.random.randn(1000)) |
| 64 | + ub = lb + 1 |
| 65 | + |
| 66 | + original = df.copy() |
| 67 | + clipped_df = df.clip(lb, ub, axis=0, inplace=inplace) |
| 68 | + |
| 69 | + if inplace: |
| 70 | + clipped_df = df |
| 71 | + |
| 72 | + for i in range(2): |
| 73 | + lb_mask = original.iloc[:, i] <= lb |
| 74 | + ub_mask = original.iloc[:, i] >= ub |
| 75 | + mask = ~lb_mask & ~ub_mask |
| 76 | + |
| 77 | + result = clipped_df.loc[lb_mask, i] |
| 78 | + tm.assert_series_equal(result, lb[lb_mask], check_names=False) |
| 79 | + assert result.name == i |
| 80 | + |
| 81 | + result = clipped_df.loc[ub_mask, i] |
| 82 | + tm.assert_series_equal(result, ub[ub_mask], check_names=False) |
| 83 | + assert result.name == i |
| 84 | + |
| 85 | + tm.assert_series_equal(clipped_df.loc[mask, i], df.loc[mask, i]) |
| 86 | + |
| 87 | + @pytest.mark.parametrize("inplace", [True, False]) |
| 88 | + @pytest.mark.parametrize("lower", [[2, 3, 4], np.asarray([2, 3, 4])]) |
| 89 | + @pytest.mark.parametrize( |
| 90 | + "axis,res", |
| 91 | + [ |
| 92 | + (0, [[2.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 7.0, 7.0]]), |
| 93 | + (1, [[2.0, 3.0, 4.0], [4.0, 5.0, 6.0], [5.0, 6.0, 7.0]]), |
| 94 | + ], |
| 95 | + ) |
| 96 | + def test_clip_against_list_like(self, simple_frame, inplace, lower, axis, res): |
| 97 | + # GH#15390 |
| 98 | + original = simple_frame.copy(deep=True) |
| 99 | + |
| 100 | + result = original.clip(lower=lower, upper=[5, 6, 7], axis=axis, inplace=inplace) |
| 101 | + |
| 102 | + expected = pd.DataFrame(res, columns=original.columns, index=original.index) |
| 103 | + if inplace: |
| 104 | + result = original |
| 105 | + tm.assert_frame_equal(result, expected, check_exact=True) |
| 106 | + |
| 107 | + @pytest.mark.parametrize("axis", [0, 1, None]) |
| 108 | + def test_clip_against_frame(self, axis): |
| 109 | + df = DataFrame(np.random.randn(1000, 2)) |
| 110 | + lb = DataFrame(np.random.randn(1000, 2)) |
| 111 | + ub = lb + 1 |
| 112 | + |
| 113 | + clipped_df = df.clip(lb, ub, axis=axis) |
| 114 | + |
| 115 | + lb_mask = df <= lb |
| 116 | + ub_mask = df >= ub |
| 117 | + mask = ~lb_mask & ~ub_mask |
| 118 | + |
| 119 | + tm.assert_frame_equal(clipped_df[lb_mask], lb[lb_mask]) |
| 120 | + tm.assert_frame_equal(clipped_df[ub_mask], ub[ub_mask]) |
| 121 | + tm.assert_frame_equal(clipped_df[mask], df[mask]) |
| 122 | + |
| 123 | + def test_clip_against_unordered_columns(self): |
| 124 | + # GH#20911 |
| 125 | + df1 = DataFrame(np.random.randn(1000, 4), columns=["A", "B", "C", "D"]) |
| 126 | + df2 = DataFrame(np.random.randn(1000, 4), columns=["D", "A", "B", "C"]) |
| 127 | + df3 = DataFrame(df2.values - 1, columns=["B", "D", "C", "A"]) |
| 128 | + result_upper = df1.clip(lower=0, upper=df2) |
| 129 | + expected_upper = df1.clip(lower=0, upper=df2[df1.columns]) |
| 130 | + result_lower = df1.clip(lower=df3, upper=3) |
| 131 | + expected_lower = df1.clip(lower=df3[df1.columns], upper=3) |
| 132 | + result_lower_upper = df1.clip(lower=df3, upper=df2) |
| 133 | + expected_lower_upper = df1.clip(lower=df3[df1.columns], upper=df2[df1.columns]) |
| 134 | + tm.assert_frame_equal(result_upper, expected_upper) |
| 135 | + tm.assert_frame_equal(result_lower, expected_lower) |
| 136 | + tm.assert_frame_equal(result_lower_upper, expected_lower_upper) |
| 137 | + |
| 138 | + def test_clip_with_na_args(self, float_frame): |
| 139 | + """Should process np.nan argument as None """ |
| 140 | + # GH#17276 |
| 141 | + tm.assert_frame_equal(float_frame.clip(np.nan), float_frame) |
| 142 | + tm.assert_frame_equal(float_frame.clip(upper=np.nan, lower=np.nan), float_frame) |
| 143 | + |
| 144 | + # GH#19992 |
| 145 | + df = DataFrame({"col_0": [1, 2, 3], "col_1": [4, 5, 6], "col_2": [7, 8, 9]}) |
| 146 | + |
| 147 | + result = df.clip(lower=[4, 5, np.nan], axis=0) |
| 148 | + expected = DataFrame( |
| 149 | + {"col_0": [4, 5, np.nan], "col_1": [4, 5, np.nan], "col_2": [7, 8, np.nan]} |
| 150 | + ) |
| 151 | + tm.assert_frame_equal(result, expected) |
| 152 | + |
| 153 | + result = df.clip(lower=[4, 5, np.nan], axis=1) |
| 154 | + expected = DataFrame( |
| 155 | + {"col_0": [4, 4, 4], "col_1": [5, 5, 6], "col_2": [np.nan, np.nan, np.nan]} |
| 156 | + ) |
| 157 | + tm.assert_frame_equal(result, expected) |
0 commit comments