@@ -82,10 +82,10 @@ They can take a number of arguments:
82
82
(including http, ftp, and S3 locations), or any object with a ``read ``
83
83
method (such as an open file or ``StringIO ``).
84
84
- ``sep `` or ``delimiter ``: A delimiter / separator to split fields
85
- on. ` read_csv ` is capable of inferring the delimiter automatically in some
86
- cases by "sniffing." The separator may be specified as a regular
87
- expression; for instance you may use ' \|\\ s*' to indicate a pipe plus
88
- arbitrary whitespace.
85
+ on. With `` sep=None ``, `` read_csv `` will try to infer the delimiter
86
+ automatically in some cases by "sniffing".
87
+ The separator may be specified as a regular expression; for instance
88
+ you may use ' \|\\ s*' to indicate a pipe plus arbitrary whitespace.
89
89
- ``delim_whitespace ``: Parse whitespace-delimited (spaces or tabs) file
90
90
(much faster than using a regular expression)
91
91
- ``compression ``: decompress ``'gzip' `` and ``'bz2' `` formats on the fly.
@@ -1085,8 +1085,8 @@ Automatically "sniffing" the delimiter
1085
1085
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1086
1086
1087
1087
``read_csv `` is capable of inferring delimited (not necessarily
1088
- comma-separated) files. YMMV , as pandas uses the :class: `python:csv.Sniffer `
1089
- class of the csv module.
1088
+ comma-separated) files, as pandas uses the :class: `python:csv.Sniffer `
1089
+ class of the csv module. For this, you have to specify `` sep=None ``.
1090
1090
1091
1091
.. ipython :: python
1092
1092
:suppress:
@@ -1098,7 +1098,7 @@ class of the csv module.
1098
1098
.. ipython :: python
1099
1099
1100
1100
print (open (' tmp2.sv' ).read())
1101
- pd.read_csv(' tmp2.sv' )
1101
+ pd.read_csv(' tmp2.sv' , sep = None )
1102
1102
1103
1103
.. _io.chunking :
1104
1104
0 commit comments