@@ -177,10 +177,7 @@ class DuplicateWarning(Warning):
177
177
_FORMAT_MAP = {"f" : "fixed" , "fixed" : "fixed" , "t" : "table" , "table" : "table" }
178
178
179
179
# storer class map
180
- _STORER_MAP = {
181
- "series" : "SeriesFixed" ,
182
- "frame" : "FrameFixed" ,
183
- }
180
+ _STORER_MAP = {"series" : "SeriesFixed" , "frame" : "FrameFixed" }
184
181
185
182
# table class map
186
183
_TABLE_MAP = {
@@ -2863,7 +2860,7 @@ def read_index_node(
2863
2860
# If the index was an empty array write_array_empty() will
2864
2861
# have written a sentinel. Here we relace it with the original.
2865
2862
if "shape" in node ._v_attrs and np .prod (node ._v_attrs .shape ) == 0 :
2866
- data = np .empty (node ._v_attrs .shape , dtype = node ._v_attrs .value_type , )
2863
+ data = np .empty (node ._v_attrs .shape , dtype = node ._v_attrs .value_type )
2867
2864
kind = _ensure_decoded (node ._v_attrs .kind )
2868
2865
name = None
2869
2866
@@ -3600,10 +3597,7 @@ def _read_axes(
3600
3597
for a in self .axes :
3601
3598
a .set_info (self .info )
3602
3599
res = a .convert (
3603
- values ,
3604
- nan_rep = self .nan_rep ,
3605
- encoding = self .encoding ,
3606
- errors = self .errors ,
3600
+ values , nan_rep = self .nan_rep , encoding = self .encoding , errors = self .errors
3607
3601
)
3608
3602
results .append (res )
3609
3603
@@ -3995,7 +3989,7 @@ def create_description(
3995
3989
return d
3996
3990
3997
3991
def read_coordinates (
3998
- self , where = None , start : Optional [int ] = None , stop : Optional [int ] = None ,
3992
+ self , where = None , start : Optional [int ] = None , stop : Optional [int ] = None
3999
3993
):
4000
3994
"""select coordinates (row numbers) from a table; return the
4001
3995
coordinates object
@@ -4262,7 +4256,7 @@ def write_data_chunk(
4262
4256
self .table .flush ()
4263
4257
4264
4258
def delete (
4265
- self , where = None , start : Optional [int ] = None , stop : Optional [int ] = None ,
4259
+ self , where = None , start : Optional [int ] = None , stop : Optional [int ] = None
4266
4260
):
4267
4261
4268
4262
# delete all rows (and return the nrows)
@@ -4691,7 +4685,7 @@ def _convert_index(name: str, index: Index, encoding: str, errors: str) -> Index
4691
4685
if inferred_type == "date" :
4692
4686
converted = np .asarray ([v .toordinal () for v in values ], dtype = np .int32 )
4693
4687
return IndexCol (
4694
- name , converted , "date" , _tables ().Time32Col (), index_name = index_name ,
4688
+ name , converted , "date" , _tables ().Time32Col (), index_name = index_name
4695
4689
)
4696
4690
elif inferred_type == "string" :
4697
4691
@@ -4707,13 +4701,13 @@ def _convert_index(name: str, index: Index, encoding: str, errors: str) -> Index
4707
4701
4708
4702
elif inferred_type in ["integer" , "floating" ]:
4709
4703
return IndexCol (
4710
- name , values = converted , kind = kind , typ = atom , index_name = index_name ,
4704
+ name , values = converted , kind = kind , typ = atom , index_name = index_name
4711
4705
)
4712
4706
else :
4713
4707
assert isinstance (converted , np .ndarray ) and converted .dtype == object
4714
4708
assert kind == "object" , kind
4715
4709
atom = _tables ().ObjectAtom ()
4716
- return IndexCol (name , converted , kind , atom , index_name = index_name , )
4710
+ return IndexCol (name , converted , kind , atom , index_name = index_name )
4717
4711
4718
4712
4719
4713
def _unconvert_index (
0 commit comments