@@ -6155,12 +6155,20 @@ def bfill(
6155
6155
method = "bfill" , axis = axis , inplace = inplace , limit = limit , downcast = downcast
6156
6156
)
6157
6157
6158
- _shared_docs [
6159
- "replace"
6160
- ] = """
6158
+ @doc (klass = _shared_doc_kwargs ["klass" ])
6159
+ def replace (
6160
+ self ,
6161
+ to_replace = None ,
6162
+ value = None ,
6163
+ inplace = False ,
6164
+ limit = None ,
6165
+ regex = False ,
6166
+ method = "pad" ,
6167
+ ):
6168
+ """
6161
6169
Replace values given in `to_replace` with `value`.
6162
6170
6163
- Values of the %( klass)s are replaced with other values dynamically.
6171
+ Values of the { klass} are replaced with other values dynamically.
6164
6172
This differs from updating with ``.loc`` or ``.iloc``, which require
6165
6173
you to specify a location to update with some value.
6166
6174
@@ -6192,19 +6200,19 @@ def bfill(
6192
6200
6193
6201
- Dicts can be used to specify different replacement values
6194
6202
for different existing values. For example,
6195
- ``{'a': 'b', 'y': 'z'}`` replaces the value 'a' with 'b' and
6203
+ ``{{ 'a': 'b', 'y': 'z'} }`` replaces the value 'a' with 'b' and
6196
6204
'y' with 'z'. To use a dict in this way the `value`
6197
6205
parameter should be `None`.
6198
6206
- For a DataFrame a dict can specify that different values
6199
6207
should be replaced in different columns. For example,
6200
- ``{'a': 1, 'b': 'z'}`` looks for the value 1 in column 'a'
6208
+ ``{{ 'a': 1, 'b': 'z'} }`` looks for the value 1 in column 'a'
6201
6209
and the value 'z' in column 'b' and replaces these values
6202
6210
with whatever is specified in `value`. The `value` parameter
6203
6211
should not be ``None`` in this case. You can treat this as a
6204
6212
special case of passing two lists except that you are
6205
6213
specifying the column to search in.
6206
6214
- For a DataFrame nested dictionaries, e.g.,
6207
- ``{'a': {'b': np.nan}}``, are read as follows: look in column
6215
+ ``{{ 'a': {{ 'b': np.nan}} }}``, are read as follows: look in column
6208
6216
'a' for the value 'b' and replace it with NaN. The `value`
6209
6217
parameter should be ``None`` to use a nested dict in this
6210
6218
way. You can nest regular expressions as well. Note that
@@ -6237,7 +6245,7 @@ def bfill(
6237
6245
string. Alternatively, this could be a regular expression or a
6238
6246
list, dict, or array of regular expressions in which case
6239
6247
`to_replace` must be ``None``.
6240
- method : {'pad', 'ffill', 'bfill', `None`}
6248
+ method : {{ 'pad', 'ffill', 'bfill', `None`} }
6241
6249
The method to use when for replacement, when `to_replace` is a
6242
6250
scalar, list or tuple and `value` is ``None``.
6243
6251
@@ -6246,7 +6254,7 @@ def bfill(
6246
6254
6247
6255
Returns
6248
6256
-------
6249
- %( klass)s
6257
+ { klass}
6250
6258
Object after replacement.
6251
6259
6252
6260
Raises
@@ -6272,8 +6280,8 @@ def bfill(
6272
6280
6273
6281
See Also
6274
6282
--------
6275
- %( klass)s .fillna : Fill NA values.
6276
- %( klass)s .where : Replace values based on boolean condition.
6283
+ { klass} .fillna : Fill NA values.
6284
+ { klass} .where : Replace values based on boolean condition.
6277
6285
Series.str.replace : Simple string replacement.
6278
6286
6279
6287
Notes
@@ -6305,9 +6313,9 @@ def bfill(
6305
6313
4 4
6306
6314
dtype: int64
6307
6315
6308
- >>> df = pd.DataFrame({'A': [0, 1, 2, 3, 4],
6316
+ >>> df = pd.DataFrame({{ 'A': [0, 1, 2, 3, 4],
6309
6317
... 'B': [5, 6, 7, 8, 9],
6310
- ... 'C': ['a', 'b', 'c', 'd', 'e']})
6318
+ ... 'C': ['a', 'b', 'c', 'd', 'e']}} )
6311
6319
>>> df.replace(0, 5)
6312
6320
A B C
6313
6321
0 5 5 a
@@ -6344,23 +6352,23 @@ def bfill(
6344
6352
6345
6353
**dict-like `to_replace`**
6346
6354
6347
- >>> df.replace({0: 10, 1: 100})
6355
+ >>> df.replace({{ 0: 10, 1: 100} })
6348
6356
A B C
6349
6357
0 10 5 a
6350
6358
1 100 6 b
6351
6359
2 2 7 c
6352
6360
3 3 8 d
6353
6361
4 4 9 e
6354
6362
6355
- >>> df.replace({'A': 0, 'B': 5}, 100)
6363
+ >>> df.replace({{ 'A': 0, 'B': 5} }, 100)
6356
6364
A B C
6357
6365
0 100 100 a
6358
6366
1 1 6 b
6359
6367
2 2 7 c
6360
6368
3 3 8 d
6361
6369
4 4 9 e
6362
6370
6363
- >>> df.replace({'A': {0: 100, 4: 400}})
6371
+ >>> df.replace({{ 'A': {{ 0: 100, 4: 400}} }})
6364
6372
A B C
6365
6373
0 100 5 a
6366
6374
1 1 6 b
@@ -6370,15 +6378,15 @@ def bfill(
6370
6378
6371
6379
**Regular expression `to_replace`**
6372
6380
6373
- >>> df = pd.DataFrame({'A': ['bat', 'foo', 'bait'],
6374
- ... 'B': ['abc', 'bar', 'xyz']})
6381
+ >>> df = pd.DataFrame({{ 'A': ['bat', 'foo', 'bait'],
6382
+ ... 'B': ['abc', 'bar', 'xyz']}} )
6375
6383
>>> df.replace(to_replace=r'^ba.$', value='new', regex=True)
6376
6384
A B
6377
6385
0 new abc
6378
6386
1 foo new
6379
6387
2 bait xyz
6380
6388
6381
- >>> df.replace({'A': r'^ba.$'}, {'A': 'new'}, regex=True)
6389
+ >>> df.replace({{ 'A': r'^ba.$'}} , {{ 'A': 'new'} }, regex=True)
6382
6390
A B
6383
6391
0 new abc
6384
6392
1 foo bar
@@ -6390,7 +6398,7 @@ def bfill(
6390
6398
1 foo new
6391
6399
2 bait xyz
6392
6400
6393
- >>> df.replace(regex={r'^ba.$': 'new', 'foo': 'xyz'})
6401
+ >>> df.replace(regex={{ r'^ba.$': 'new', 'foo': 'xyz'} })
6394
6402
A B
6395
6403
0 new abc
6396
6404
1 xyz new
@@ -6406,9 +6414,9 @@ def bfill(
6406
6414
the data types in the `to_replace` parameter must match the data
6407
6415
type of the value being replaced:
6408
6416
6409
- >>> df = pd.DataFrame({'A': [True, False, True],
6410
- ... 'B': [False, True, False]})
6411
- >>> df.replace({'a string': 'new value', True: False}) # raises
6417
+ >>> df = pd.DataFrame({{ 'A': [True, False, True],
6418
+ ... 'B': [False, True, False]}} )
6419
+ >>> df.replace({{ 'a string': 'new value', True: False} }) # raises
6412
6420
Traceback (most recent call last):
6413
6421
...
6414
6422
TypeError: Cannot compare types 'ndarray(dtype=bool)' and 'str'
@@ -6427,7 +6435,7 @@ def bfill(
6427
6435
``s.replace({'a': None})`` is equivalent to
6428
6436
``s.replace(to_replace={'a': None}, value=None, method=None)``:
6429
6437
6430
- >>> s.replace({'a': None})
6438
+ >>> s.replace({{ 'a': None} })
6431
6439
0 10
6432
6440
1 None
6433
6441
2 None
@@ -6450,17 +6458,6 @@ def bfill(
6450
6458
4 b
6451
6459
dtype: object
6452
6460
"""
6453
-
6454
- @Appender (_shared_docs ["replace" ] % _shared_doc_kwargs )
6455
- def replace (
6456
- self ,
6457
- to_replace = None ,
6458
- value = None ,
6459
- inplace = False ,
6460
- limit = None ,
6461
- regex = False ,
6462
- method = "pad" ,
6463
- ):
6464
6461
if not (
6465
6462
is_scalar (to_replace )
6466
6463
or isinstance (to_replace , pd .Series )
@@ -8252,17 +8249,29 @@ def ranker(data):
8252
8249
8253
8250
return ranker (data )
8254
8251
8255
- _shared_docs [
8256
- "align"
8257
- ] = """
8252
+ @doc (** _shared_doc_kwargs )
8253
+ def align (
8254
+ self ,
8255
+ other ,
8256
+ join = "outer" ,
8257
+ axis = None ,
8258
+ level = None ,
8259
+ copy = True ,
8260
+ fill_value = None ,
8261
+ method = None ,
8262
+ limit = None ,
8263
+ fill_axis = 0 ,
8264
+ broadcast_axis = None ,
8265
+ ):
8266
+ """
8258
8267
Align two objects on their axes with the specified join method.
8259
8268
8260
8269
Join method is specified for each axis Index.
8261
8270
8262
8271
Parameters
8263
8272
----------
8264
8273
other : DataFrame or Series
8265
- join : {'outer', 'inner', 'left', 'right'}, default 'outer'
8274
+ join : {{ 'outer', 'inner', 'left', 'right'} }, default 'outer'
8266
8275
axis : allowed axis of the other object, default None
8267
8276
Align on index (0), columns (1), or both (None).
8268
8277
level : int or level name, default None
@@ -8274,7 +8283,7 @@ def ranker(data):
8274
8283
fill_value : scalar, default np.NaN
8275
8284
Value to use for missing values. Defaults to NaN, but can be any
8276
8285
"compatible" value.
8277
- method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None
8286
+ method : {{ 'backfill', 'bfill', 'pad', 'ffill', None} }, default None
8278
8287
Method to use for filling holes in reindexed Series:
8279
8288
8280
8289
- pad / ffill: propagate last valid observation forward to next valid.
@@ -8287,32 +8296,18 @@ def ranker(data):
8287
8296
be partially filled. If method is not specified, this is the
8288
8297
maximum number of entries along the entire axis where NaNs will be
8289
8298
filled. Must be greater than 0 if not None.
8290
- fill_axis : %( axes_single_arg)s , default 0
8299
+ fill_axis : { axes_single_arg} , default 0
8291
8300
Filling axis, method and limit.
8292
- broadcast_axis : %( axes_single_arg)s , default None
8301
+ broadcast_axis : { axes_single_arg} , default None
8293
8302
Broadcast values along this axis, if aligning two objects of
8294
8303
different dimensions.
8295
8304
8296
8305
Returns
8297
8306
-------
8298
- (left, right) : (%( klass)s , type of other)
8307
+ (left, right) : ({ klass} , type of other)
8299
8308
Aligned objects.
8300
8309
"""
8301
8310
8302
- @Appender (_shared_docs ["align" ] % _shared_doc_kwargs )
8303
- def align (
8304
- self ,
8305
- other ,
8306
- join = "outer" ,
8307
- axis = None ,
8308
- level = None ,
8309
- copy = True ,
8310
- fill_value = None ,
8311
- method = None ,
8312
- limit = None ,
8313
- fill_axis = 0 ,
8314
- broadcast_axis = None ,
8315
- ):
8316
8311
method = missing .clean_fill_method (method )
8317
8312
8318
8313
if broadcast_axis == 1 and self .ndim != other .ndim :
@@ -8849,9 +8844,11 @@ def mask(
8849
8844
errors = errors ,
8850
8845
)
8851
8846
8852
- _shared_docs [
8853
- "shift"
8854
- ] = """
8847
+ @doc (klass = _shared_doc_kwargs ["klass" ])
8848
+ def shift (
8849
+ self : FrameOrSeries , periods = 1 , freq = None , axis = 0 , fill_value = None
8850
+ ) -> FrameOrSeries :
8851
+ """
8855
8852
Shift index by desired number of periods with an optional time `freq`.
8856
8853
8857
8854
When `freq` is not passed, shift the index without realigning the data.
@@ -8868,7 +8865,7 @@ def mask(
8868
8865
If `freq` is specified then the index values are shifted but the
8869
8866
data is not realigned. That is, use `freq` if you would like to
8870
8867
extend the index when shifting and preserve the original data.
8871
- axis : {0 or 'index', 1 or 'columns', None}, default None
8868
+ axis : {{ 0 or 'index', 1 or 'columns', None} }, default None
8872
8869
Shift direction.
8873
8870
fill_value : object, optional
8874
8871
The scalar value to use for newly introduced missing values.
@@ -8881,7 +8878,7 @@ def mask(
8881
8878
8882
8879
Returns
8883
8880
-------
8884
- %( klass)s
8881
+ { klass}
8885
8882
Copy of input object, shifted.
8886
8883
8887
8884
See Also
@@ -8894,9 +8891,9 @@ def mask(
8894
8891
8895
8892
Examples
8896
8893
--------
8897
- >>> df = pd.DataFrame({'Col1': [10, 20, 15, 30, 45],
8894
+ >>> df = pd.DataFrame({{ 'Col1': [10, 20, 15, 30, 45],
8898
8895
... 'Col2': [13, 23, 18, 33, 48],
8899
- ... 'Col3': [17, 27, 22, 37, 52]})
8896
+ ... 'Col3': [17, 27, 22, 37, 52]}} )
8900
8897
8901
8898
>>> df.shift(periods=3)
8902
8899
Col1 Col2 Col3
@@ -8922,11 +8919,6 @@ def mask(
8922
8919
3 10 13 17
8923
8920
4 20 23 27
8924
8921
"""
8925
-
8926
- @Appender (_shared_docs ["shift" ] % _shared_doc_kwargs )
8927
- def shift (
8928
- self : FrameOrSeries , periods = 1 , freq = None , axis = 0 , fill_value = None
8929
- ) -> FrameOrSeries :
8930
8922
if periods == 0 :
8931
8923
return self .copy ()
8932
8924
0 commit comments