@@ -1299,6 +1299,31 @@ frequencies. We will refer to these aliases as *offset aliases*.
1299
1299
given frequency it will roll to the next value for ``start_date ``
1300
1300
(respectively previous for the ``end_date ``)
1301
1301
1302
+ .. _timeseries.period_aliases :
1303
+
1304
+ Period aliases
1305
+ ~~~~~~~~~~~~~~
1306
+
1307
+ A number of string aliases are given to useful common time series
1308
+ frequencies. We will refer to these aliases as *period aliases *.
1309
+
1310
+ .. csv-table ::
1311
+ :header: "Alias", "Description"
1312
+ :widths: 15, 100
1313
+
1314
+ "B", "business day frequency"
1315
+ "D", "calendar day frequency"
1316
+ "W", "weekly frequency"
1317
+ "M", "monthly frequency"
1318
+ "Q", "quarterly frequency"
1319
+ "A, Y", "yearly frequency"
1320
+ "H", "hourly frequency"
1321
+ "T, min", "minutely frequency"
1322
+ "S", "secondly frequency"
1323
+ "L, ms", "milliseconds"
1324
+ "U, us", "microseconds"
1325
+ "N", "nanoseconds"
1326
+
1302
1327
1303
1328
Combining aliases
1304
1329
~~~~~~~~~~~~~~~~~
@@ -2083,7 +2108,7 @@ Period dtypes
2083
2108
dtype similar to the :ref: `timezone aware dtype <timeseries.timezone_series >` (``datetime64[ns, tz] ``).
2084
2109
2085
2110
The ``period `` dtype holds the ``freq `` attribute and is represented with
2086
- ``period[freq] `` like ``period[D] `` or ``period[M] ``, using :ref: `frequency strings <timeseries.offset_aliases >`.
2111
+ ``period[freq] `` like ``period[D] `` or ``period[M] ``, using :ref: `frequency strings <timeseries.period_aliases >`.
2087
2112
2088
2113
.. ipython :: python
2089
2114
0 commit comments