@@ -7249,13 +7249,13 @@ def interpolate(
7249
7249
* 'pad': Fill in NaNs using existing values.
7250
7250
* 'nearest', 'zero', 'slinear', 'quadratic', 'cubic',
7251
7251
'barycentric', 'polynomial': Passed to
7252
- `scipy.interpolate.interp1d`, whereas 'spline' is assed to
7252
+ `scipy.interpolate.interp1d`, whereas 'spline' is passed to
7253
7253
`scipy.interpolate.UnivariateSpline`. These methods use the numerical
7254
7254
values of the index. Both 'polynomial' and 'spline' require that
7255
7255
you also specify an `order` (int), e.g.
7256
- ``df.interpolate(method='polynomial', order=5)``. Note that, Scipy
7257
- `slinear` method refers to the Scipy first order spline instead
7258
- of Pandas first order spline.
7256
+ ``df.interpolate(method='polynomial', order=5)``. Note that,
7257
+ `slinear` method in Pandas refers to the Scipy first order ` spline` instead
7258
+ of Pandas first order ` spline` .
7259
7259
* 'krogh', 'piecewise_polynomial', 'spline', 'pchip', 'akima',
7260
7260
'cubicspline': Wrappers around the SciPy interpolation methods of
7261
7261
similar names. See `Notes`.
0 commit comments