Skip to content

Commit d0ac06a

Browse files
Merge pull request #11837 from seales/master
Spelling fixes
2 parents 158e85a + 2f65f93 commit d0ac06a

16 files changed

+22
-22
lines changed

doc/source/advanced.rst

+1-1
Original file line numberDiff line numberDiff line change
@@ -525,7 +525,7 @@ they have a MultiIndex:
525525
526526
df.T.sort_index(level=1, axis=1)
527527
528-
The ``MultiIndex`` object has code to **explicity check the sort depth**. Thus,
528+
The ``MultiIndex`` object has code to **explicitly check the sort depth**. Thus,
529529
if you try to index at a depth at which the index is not sorted, it will raise
530530
an exception. Here is a concrete example to illustrate this:
531531

doc/source/api.rst

+1-1
Original file line numberDiff line numberDiff line change
@@ -552,7 +552,7 @@ These can be accessed like ``Series.dt.<property>``.
552552
String handling
553553
~~~~~~~~~~~~~~~
554554
``Series.str`` can be used to access the values of the series as
555-
strings and apply several methods to it. These can be acccessed like
555+
strings and apply several methods to it. These can be accessed like
556556
``Series.str.<function/property>``.
557557

558558
.. autosummary::

doc/source/basics.rst

+1-1
Original file line numberDiff line numberDiff line change
@@ -1097,7 +1097,7 @@ Note that the same result could have been achieved using
10971097
ts2.reindex(ts.index).fillna(method='ffill')
10981098
10991099
:meth:`~Series.reindex` will raise a ValueError if the index is not monotonic
1100-
increasing or descreasing. :meth:`~Series.fillna` and :meth:`~Series.interpolate`
1100+
increasing or decreasing. :meth:`~Series.fillna` and :meth:`~Series.interpolate`
11011101
will not make any checks on the order of the index.
11021102

11031103
.. _basics.limits_on_reindex_fill:

doc/source/categorical.rst

+2-2
Original file line numberDiff line numberDiff line change
@@ -178,7 +178,7 @@ It's also possible to pass in the categories in a specific order:
178178
179179
.. note::
180180

181-
New categorical data are NOT automatically ordered. You must explicity pass ``ordered=True`` to
181+
New categorical data are NOT automatically ordered. You must explicitly pass ``ordered=True`` to
182182
indicate an ordered ``Categorical``.
183183

184184

@@ -342,7 +342,7 @@ necessarily make the sort order the same as the categories order.
342342
Multi Column Sorting
343343
~~~~~~~~~~~~~~~~~~~~
344344

345-
A categorical dtyped column will partcipate in a multi-column sort in a similar manner to other columns.
345+
A categorical dtyped column will participate in a multi-column sort in a similar manner to other columns.
346346
The ordering of the categorical is determined by the ``categories`` of that column.
347347

348348
.. ipython:: python

doc/source/comparison_with_sas.rst

+3-3
Original file line numberDiff line numberDiff line change
@@ -271,15 +271,15 @@ date/datetime columns.
271271
date2 = mdy(2, 15, 2015);
272272
date1_year = year(date1);
273273
date2_month = month(date2);
274-
* shift date to begninning of next interval;
274+
* shift date to beginning of next interval;
275275
date1_next = intnx('MONTH', date1, 1);
276276
* count intervals between dates;
277277
months_between = intck('MONTH', date1, date2);
278278
run;
279279
280280
The equivalent pandas operations are shown below. In addition to these
281281
functions pandas supports other Time Series features
282-
not available in Base SAS (such as resampling and and custom offets) -
282+
not available in Base SAS (such as resampling and and custom offsets) -
283283
see the :ref:`timeseries documentation<timeseries>` for more details.
284284

285285
.. ipython:: python
@@ -350,7 +350,7 @@ Sorting in SAS is accomplished via ``PROC SORT``
350350
run;
351351
352352
pandas objects have a :meth:`~DataFrame.sort_values` method, which
353-
takes a list of columnns to sort by.
353+
takes a list of columns to sort by.
354354

355355
.. ipython:: python
356356

doc/source/cookbook.rst

+1-1
Original file line numberDiff line numberDiff line change
@@ -333,7 +333,7 @@ The :ref:`multindexing <advanced.hierarchical>` docs.
333333
334334
# As Labelled Index
335335
df = df.set_index('row');df
336-
# With Heirarchical Columns
336+
# With Hierarchical Columns
337337
df.columns = pd.MultiIndex.from_tuples([tuple(c.split('_')) for c in df.columns]);df
338338
# Now stack & Reset
339339
df = df.stack(0).reset_index(1);df

doc/source/dsintro.rst

+1-1
Original file line numberDiff line numberDiff line change
@@ -46,7 +46,7 @@ Series
4646

4747
.. warning::
4848

49-
In 0.13.0 ``Series`` has internaly been refactored to no longer sub-class ``ndarray``
49+
In 0.13.0 ``Series`` has internally been refactored to no longer sub-class ``ndarray``
5050
but instead subclass ``NDFrame``, similarly to the rest of the pandas containers. This should be
5151
a transparent change with only very limited API implications (See the :ref:`Internal Refactoring<whatsnew_0130.refactoring>`)
5252

doc/source/ecosystem.rst

+1-1
Original file line numberDiff line numberDiff line change
@@ -155,7 +155,7 @@ or multi-indexed DataFrames.
155155
fredapi is a Python interface to the `Federal Reserve Economic Data (FRED) <http://research.stlouisfed.org/fred2/>`__
156156
provided by the Federal Reserve Bank of St. Louis. It works with both the FRED database and ALFRED database that
157157
contains point-in-time data (i.e. historic data revisions). fredapi provides a wrapper in python to the FRED
158-
HTTP API, and also provides several conveninent methods for parsing and analyzing point-in-time data from ALFRED.
158+
HTTP API, and also provides several convenient methods for parsing and analyzing point-in-time data from ALFRED.
159159
fredapi makes use of pandas and returns data in a Series or DataFrame. This module requires a FRED API key that
160160
you can obtain for free on the FRED website.
161161

doc/source/enhancingperf.rst

+1-1
Original file line numberDiff line numberDiff line change
@@ -745,7 +745,7 @@ Technical Minutia Regarding Expression Evaluation
745745

746746
Expressions that would result in an object dtype or involve datetime operations
747747
(because of ``NaT``) must be evaluated in Python space. The main reason for
748-
this behavior is to maintain backwards compatbility with versions of numpy <
748+
this behavior is to maintain backwards compatibility with versions of numpy <
749749
1.7. In those versions of ``numpy`` a call to ``ndarray.astype(str)`` will
750750
truncate any strings that are more than 60 characters in length. Second, we
751751
can't pass ``object`` arrays to ``numexpr`` thus string comparisons must be

doc/source/groupby.rst

+1-1
Original file line numberDiff line numberDiff line change
@@ -649,7 +649,7 @@ For dataframes with multiple columns, filters should explicitly specify a column
649649
.. note::
650650

651651
Some functions when applied to a groupby object will act as a **filter** on the input, returning
652-
a reduced shape of the original (and potentitally eliminating groups), but with the index unchanged.
652+
a reduced shape of the original (and potentially eliminating groups), but with the index unchanged.
653653
Passing ``as_index=False`` will not affect these transformation methods.
654654

655655
For example: ``head, tail``.

doc/source/indexing.rst

+1-1
Original file line numberDiff line numberDiff line change
@@ -138,7 +138,7 @@ lower-dimensional slices. Thus,
138138

139139
Series; ``series[label]``; scalar value
140140
DataFrame; ``frame[colname]``; ``Series`` corresponding to colname
141-
Panel; ``panel[itemname]``; ``DataFrame`` corresponing to the itemname
141+
Panel; ``panel[itemname]``; ``DataFrame`` corresponding to the itemname
142142

143143
Here we construct a simple time series data set to use for illustrating the
144144
indexing functionality:

doc/source/io.rst

+2-2
Original file line numberDiff line numberDiff line change
@@ -3065,7 +3065,7 @@ indexed dimension as the ``where``.
30653065
i = store.root.df.table.cols.index.index
30663066
i.optlevel, i.kind
30673067
3068-
Ofentimes when appending large amounts of data to a store, it is useful to turn off index creation for each append, then recreate at the end.
3068+
Oftentimes when appending large amounts of data to a store, it is useful to turn off index creation for each append, then recreate at the end.
30693069

30703070
.. ipython:: python
30713071
@@ -4415,7 +4415,7 @@ whether imported ``Categorical`` variables are ordered.
44154415

44164416
*Stata* supports partially labeled series. These series have value labels for
44174417
some but not all data values. Importing a partially labeled series will produce
4418-
a ``Categorial`` with string categories for the values that are labeled and
4418+
a ``Categorical`` with string categories for the values that are labeled and
44194419
numeric categories for values with no label.
44204420

44214421
.. _io.other:

doc/source/merging.rst

+1-1
Original file line numberDiff line numberDiff line change
@@ -135,7 +135,7 @@ functionality below.
135135
.. note::
136136
It is worth noting however, that ``concat`` (and therefore ``append``) makes
137137
a full copy of the data, and that constantly reusing this function can
138-
create a signifcant performance hit. If you need to use the operation over
138+
create a significant performance hit. If you need to use the operation over
139139
several datasets, use a list comprehension.
140140

141141
::

doc/source/timedeltas.rst

+1-1
Original file line numberDiff line numberDiff line change
@@ -334,7 +334,7 @@ Similarly to other of the datetime-like indices, ``DatetimeIndex`` and ``PeriodI
334334
index=timedelta_range('1 days', periods=100, freq='h'))
335335
s
336336
337-
Selections work similary, with coercion on string-likes and slices:
337+
Selections work similarly, with coercion on string-likes and slices:
338338

339339
.. ipython:: python
340340

doc/source/timeseries.rst

+3-3
Original file line numberDiff line numberDiff line change
@@ -672,7 +672,7 @@ used exactly like a ``Timedelta`` - see the
672672
673673
Note that some offsets (such as ``BQuarterEnd``) do not have a
674674
vectorized implementation. They can still be used but may
675-
calculate signficantly slower and will raise a ``PerformanceWarning``
675+
calculate significantly slower and will raise a ``PerformanceWarning``
676676

677677
.. ipython:: python
678678
:okwarning:
@@ -885,7 +885,7 @@ frequencies. We will refer to these aliases as *offset aliases*
885885
"H", "hourly frequency"
886886
"T, min", "minutely frequency"
887887
"S", "secondly frequency"
888-
"L, ms", "milliseonds"
888+
"L, ms", "milliseconds"
889889
"U, us", "microseconds"
890890
"N", "nanoseconds"
891891

@@ -1374,7 +1374,7 @@ frequency. Arithmetic is not allowed between ``Period`` with different ``freq``
13741374
p == Period('2012-01', freq='3M')
13751375
13761376
1377-
If ``Period`` freq is daily or higher (``D``, ``H``, ``T``, ``S``, ``L``, ``U``, ``N``), ``offsets`` and ``timedelta``-like can be added if the result can have the same freq. Otherise, ``ValueError`` will be raised.
1377+
If ``Period`` freq is daily or higher (``D``, ``H``, ``T``, ``S``, ``L``, ``U``, ``N``), ``offsets`` and ``timedelta``-like can be added if the result can have the same freq. Otherwise, ``ValueError`` will be raised.
13781378

13791379
.. ipython:: python
13801380

doc/source/visualization.rst

+1-1
Original file line numberDiff line numberDiff line change
@@ -466,7 +466,7 @@ When ``subplots=False`` / ``by`` is ``None``:
466466
This is the default of ``boxplot`` in historical reason.
467467
Note that ``plot(kind='box')`` returns ``Axes`` as default as the same as other plots.
468468
* if ``return_type`` is ``'axes'``, a :class:`matplotlib Axes <matplotlib.axes.Axes>` containing the boxplot is returned.
469-
* if ``return_type`` is ``'both'`` a namedtuple containging the :class:`matplotlib Axes <matplotlib.axes.Axes>`
469+
* if ``return_type`` is ``'both'`` a namedtuple containing the :class:`matplotlib Axes <matplotlib.axes.Axes>`
470470
and :class:`matplotlib Lines <matplotlib.lines.Line2D>` is returned
471471

472472
When ``subplots=True`` / ``by`` is some column of the DataFrame:

0 commit comments

Comments
 (0)