@@ -10478,7 +10478,7 @@ def _doc_parms(cls):
10478
10478
True
10479
10479
>>> pd.Series([True, False]).all()
10480
10480
False
10481
- >>> pd.Series([]).all()
10481
+ >>> pd.Series([], dtype=object ).all()
10482
10482
True
10483
10483
>>> pd.Series([np.nan]).all()
10484
10484
True
@@ -10846,7 +10846,7 @@ def _doc_parms(cls):
10846
10846
False
10847
10847
>>> pd.Series([True, False]).any()
10848
10848
True
10849
- >>> pd.Series([]).any()
10849
+ >>> pd.Series([], dtype=object ).any()
10850
10850
False
10851
10851
>>> pd.Series([np.nan]).any()
10852
10852
False
@@ -10948,13 +10948,13 @@ def _doc_parms(cls):
10948
10948
10949
10949
By default, the sum of an empty or all-NA Series is ``0``.
10950
10950
10951
- >>> pd.Series([]).sum() # min_count=0 is the default
10951
+ >>> pd.Series([], dtype=float ).sum() # min_count=0 is the default
10952
10952
0.0
10953
10953
10954
10954
This can be controlled with the ``min_count`` parameter. For example, if
10955
10955
you'd like the sum of an empty series to be NaN, pass ``min_count=1``.
10956
10956
10957
- >>> pd.Series([]).sum(min_count=1)
10957
+ >>> pd.Series([], dtype=float ).sum(min_count=1)
10958
10958
nan
10959
10959
10960
10960
Thanks to the ``skipna`` parameter, ``min_count`` handles all-NA and
@@ -10995,12 +10995,12 @@ def _doc_parms(cls):
10995
10995
--------
10996
10996
By default, the product of an empty or all-NA Series is ``1``
10997
10997
10998
- >>> pd.Series([]).prod()
10998
+ >>> pd.Series([], dtype=float ).prod()
10999
10999
1.0
11000
11000
11001
11001
This can be controlled with the ``min_count`` parameter
11002
11002
11003
- >>> pd.Series([]).prod(min_count=1)
11003
+ >>> pd.Series([], dtype=float ).prod(min_count=1)
11004
11004
nan
11005
11005
11006
11006
Thanks to the ``skipna`` parameter, ``min_count`` handles all-NA and
0 commit comments