|
5 | 5 | from nose.tools import assert_equal
|
6 | 6 | import numpy as np
|
7 | 7 | from pandas.tslib import iNaT, NaT
|
8 |
| -from pandas import Series, DataFrame, date_range, DatetimeIndex, Timestamp |
| 8 | +from pandas import Series, DataFrame, date_range, DatetimeIndex, Timestamp, Float64Index |
9 | 9 | from pandas import compat
|
10 | 10 | from pandas.compat import range, long, lrange, lmap, u
|
11 | 11 | from pandas.core.common import notnull, isnull, array_equivalent
|
@@ -181,7 +181,11 @@ def test_array_equivalent():
|
181 | 181 | assert not array_equivalent(np.array([np.nan, 1, np.nan]),
|
182 | 182 | np.array([np.nan, 2, np.nan]))
|
183 | 183 | assert not array_equivalent(np.array(['a', 'b', 'c', 'd']), np.array(['e', 'e']))
|
184 |
| - |
| 184 | + assert array_equivalent(Float64Index([0, np.nan]), Float64Index([0, np.nan])) |
| 185 | + assert not array_equivalent(Float64Index([0, np.nan]), Float64Index([1, np.nan])) |
| 186 | + assert array_equivalent(DatetimeIndex([0, np.nan]), DatetimeIndex([0, np.nan])) |
| 187 | + assert not array_equivalent(DatetimeIndex([0, np.nan]), DatetimeIndex([1, np.nan])) |
| 188 | + |
185 | 189 | def test_datetimeindex_from_empty_datetime64_array():
|
186 | 190 | for unit in [ 'ms', 'us', 'ns' ]:
|
187 | 191 | idx = DatetimeIndex(np.array([], dtype='datetime64[%s]' % unit))
|
|
0 commit comments