@@ -54,7 +54,7 @@ class ParserWarning(Warning):
54
54
Skip spaces after delimiter
55
55
escapechar : string (length 1), default None
56
56
One-character string used to escape delimiter when quoting is QUOTE_NONE.
57
- dtype : Type name or dict of column -> type
57
+ dtype : Type name or dict of column -> type, default None
58
58
Data type for data or columns. E.g. {'a': np.float64, 'b': np.int32}
59
59
(Unsupported with engine='python')
60
60
compression : {'gzip', 'bz2', 'infer', None}, default 'infer'
@@ -65,7 +65,7 @@ class ParserWarning(Warning):
65
65
dialect : string or csv.Dialect instance, default None
66
66
If None defaults to Excel dialect. Ignored if sep longer than 1 char
67
67
See csv.Dialect documentation for more details
68
- header : int, list of ints
68
+ header : int, list of ints, default 'infer'
69
69
Row number(s) to use as the column names, and the start of the
70
70
data. Defaults to 0 if no ``names`` passed, otherwise ``None``. Explicitly
71
71
pass ``header=0`` to be able to replace existing names. The header can be
@@ -74,30 +74,30 @@ class ParserWarning(Warning):
74
74
skipped (e.g. 2 in this example are skipped). Note that this parameter
75
75
ignores commented lines and empty lines if ``skip_blank_lines=True``, so header=0
76
76
denotes the first line of data rather than the first line of the file.
77
- skiprows : list-like or integer
77
+ skiprows : list-like or integer, default None
78
78
Line numbers to skip (0-indexed) or number of lines to skip (int)
79
79
at the start of the file
80
80
index_col : int or sequence or False, default None
81
81
Column to use as the row labels of the DataFrame. If a sequence is given, a
82
82
MultiIndex is used. If you have a malformed file with delimiters at the end
83
83
of each line, you might consider index_col=False to force pandas to _not_
84
84
use the first column as the index (row names)
85
- names : array-like
85
+ names : array-like, default None
86
86
List of column names to use. If file contains no header row, then you
87
87
should explicitly pass header=None
88
88
prefix : string, default None
89
89
Prefix to add to column numbers when no header, e.g 'X' for X0, X1, ...
90
90
na_values : str, list-like or dict, default None
91
91
Additional strings to recognize as NA/NaN. If dict passed, specific
92
92
per-column NA values
93
- true_values : list
93
+ true_values : list, default None
94
94
Values to consider as True
95
- false_values : list
95
+ false_values : list, default None
96
96
Values to consider as False
97
97
keep_default_na : bool, default True
98
98
If na_values are specified and keep_default_na is False the default NaN
99
99
values are overridden, otherwise they're appended to
100
- parse_dates : boolean, list of ints or names, list of lists, or dict
100
+ parse_dates : boolean, list of ints or names, list of lists, or dict, default False
101
101
If True -> try parsing the index.
102
102
If [1, 2, 3] -> try parsing columns 1, 2, 3 each as a separate date column.
103
103
If [[1, 3]] -> combine columns 1 and 3 and parse as a single date column.
@@ -106,7 +106,7 @@ class ParserWarning(Warning):
106
106
keep_date_col : boolean, default False
107
107
If True and parse_dates specifies combining multiple columns then
108
108
keep the original columns.
109
- date_parser : function
109
+ date_parser : function, default None
110
110
Function to use for converting a sequence of string columns to an
111
111
array of datetime instances. The default uses dateutil.parser.parser
112
112
to do the conversion. Pandas will try to call date_parser in three different
@@ -154,7 +154,7 @@ class ParserWarning(Warning):
154
154
Detect missing value markers (empty strings and the value of na_values). In
155
155
data without any NAs, passing na_filter=False can improve the performance
156
156
of reading a large file
157
- usecols : array-like
157
+ usecols : array-like, default None
158
158
Return a subset of the columns.
159
159
Results in much faster parsing time and lower memory usage.
160
160
mangle_dupe_cols : boolean, default True
0 commit comments