@@ -832,28 +832,25 @@ def infer_dtype_from_scalar(val) -> tuple[DtypeObj, Any]:
832
832
pa_dtype = pa .time64 ("us" )
833
833
dtype = ArrowDtype (pa_dtype )
834
834
835
- elif isinstance (val , dt .time ):
836
- if val .tzinfo is None :
837
- # pyarrow doesn't have a dtype for timetz.
838
- opt = get_option ("future.infer_time" )
839
- if opt is None :
840
- warnings .warn (
841
- "Pandas type inference with a `datetime.time` "
842
- "object is deprecated. In a future version, this will give "
843
- "time32[pyarrow] dtype, which will require pyarrow to be "
844
- "installed. To opt in to the new behavior immediately set "
845
- "`pd.set_option('future.infer_time', True)`. To keep the "
846
- "old behavior pass `dtype=object`." ,
847
- FutureWarning ,
848
- stacklevel = find_stack_level (),
849
- )
850
- elif opt is True :
851
- import pyarrow as pa
835
+ elif isinstance (val , dt .date ):
836
+ opt = get_option ("future.infer_date" )
837
+ if opt is None :
838
+ warnings .warn (
839
+ "Pandas type inference with a `datetime.date` "
840
+ "object is deprecated. In a future version, this will give "
841
+ "date32[pyarrow] dtype, which will require pyarrow to be "
842
+ "installed. To opt in to the new behavior immediately set "
843
+ "`pd.set_option('future.infer_date', True)`. To keep the "
844
+ "old behavior pass `dtype=object`." ,
845
+ FutureWarning ,
846
+ stacklevel = find_stack_level (),
847
+ )
848
+ elif opt is True :
849
+ import pyarrow as pa
852
850
853
- pa_dtype = pa .time64 ("us" )
854
- from pandas .core .arrays .arrow import ArrowDtype
851
+ pa_dtype = pa .date32 ()
855
852
856
- dtype = ArrowDtype (pa_dtype )
853
+ dtype = ArrowDtype (pa_dtype )
857
854
858
855
elif is_bool (val ):
859
856
dtype = np .dtype (np .bool_ )
0 commit comments