You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
@@ -895,7 +895,7 @@ of the same class will usually be closer together and form larger structures.
895
895
896
896
.. ipython:: python
897
897
898
-
from pandas.tools.plotting import andrews_curves
898
+
from pandas.plotting import andrews_curves
899
899
900
900
data = pd.read_csv('data/iris.data')
901
901
@@ -917,7 +917,7 @@ represents one data point. Points that tend to cluster will appear closer togeth
917
917
918
918
.. ipython:: python
919
919
920
-
from pandas.tools.plotting import parallel_coordinates
920
+
from pandas.plotting import parallel_coordinates
921
921
922
922
data = pd.read_csv('data/iris.data')
923
923
@@ -947,7 +947,7 @@ implies that the underlying data are not random.
947
947
948
948
.. ipython:: python
949
949
950
-
from pandas.tools.plotting import lag_plot
950
+
from pandas.plotting import lag_plot
951
951
952
952
plt.figure()
953
953
@@ -982,7 +982,7 @@ confidence band.
982
982
983
983
.. ipython:: python
984
984
985
-
from pandas.tools.plotting import autocorrelation_plot
985
+
from pandas.plotting import autocorrelation_plot
986
986
987
987
plt.figure()
988
988
@@ -1015,7 +1015,7 @@ are what constitutes the bootstrap plot.
1015
1015
1016
1016
.. ipython:: python
1017
1017
1018
-
from pandas.tools.plotting import bootstrap_plot
1018
+
from pandas.plotting import bootstrap_plot
1019
1019
1020
1020
data = pd.Series(np.random.rand(1000))
1021
1021
@@ -1047,7 +1047,7 @@ be colored differently.
1047
1047
1048
1048
.. ipython:: python
1049
1049
1050
-
from pandas.tools.plotting import radviz
1050
+
from pandas.plotting import radviz
1051
1051
1052
1052
data = pd.read_csv('data/iris.data')
1053
1053
@@ -1437,11 +1437,11 @@ Also, you can pass different :class:`DataFrame` or :class:`Series` for ``table``
1437
1437
1438
1438
plt.close('all')
1439
1439
1440
-
Finally, there is a helper function ``pandas.tools.plotting.table`` to create a table from :class:`DataFrame` and :class:`Series`, and add it to an ``matplotlib.Axes``. This function can accept keywords which matplotlib table has.
1440
+
Finally, there is a helper function ``pandas.plotting.table`` to create a table from :class:`DataFrame` and :class:`Series`, and add it to an ``matplotlib.Axes``. This function can accept keywords which matplotlib table has.
0 commit comments