|
8 | 8 | from datetime import datetime, timedelta
|
9 | 9 | from functools import partial
|
10 | 10 |
|
11 |
| -from numpy.lib.format import read_array, write_array |
12 | 11 | import numpy as np
|
13 |
| - |
14 | 12 | import pandas as pd
|
15 | 13 | import pandas.algos as algos
|
16 | 14 | import pandas.lib as lib
|
17 | 15 | import pandas.tslib as tslib
|
18 | 16 | from pandas import compat
|
19 |
| -from pandas.compat import (BytesIO, range, long, u, zip, map, string_types, |
| 17 | +from pandas.compat import (range, long, u, zip, map, string_types, |
20 | 18 | iteritems)
|
21 | 19 | from pandas.types import api as gt
|
22 | 20 | from pandas.types.api import * # noqa
|
@@ -378,27 +376,6 @@ def flatten(l):
|
378 | 376 | yield el
|
379 | 377 |
|
380 | 378 |
|
381 |
| -def _pickle_array(arr): |
382 |
| - arr = arr.view(np.ndarray) |
383 |
| - |
384 |
| - buf = BytesIO() |
385 |
| - write_array(buf, arr) |
386 |
| - |
387 |
| - return buf.getvalue() |
388 |
| - |
389 |
| - |
390 |
| -def _unpickle_array(bytes): |
391 |
| - arr = read_array(BytesIO(bytes)) |
392 |
| - |
393 |
| - # All datetimes should be stored as M8[ns]. When unpickling with |
394 |
| - # numpy1.6, it will read these as M8[us]. So this ensures all |
395 |
| - # datetime64 types are read as MS[ns] |
396 |
| - if is_datetime64_dtype(arr): |
397 |
| - arr = arr.view(_NS_DTYPE) |
398 |
| - |
399 |
| - return arr |
400 |
| - |
401 |
| - |
402 | 379 | def _coerce_indexer_dtype(indexer, categories):
|
403 | 380 | """ coerce the indexer input array to the smallest dtype possible """
|
404 | 381 | l = len(categories)
|
|
0 commit comments