@@ -2223,6 +2223,7 @@ def to_html(
2223
2223
encoding = encoding ,
2224
2224
)
2225
2225
2226
+ # ----------------------------------------------------------------------
2226
2227
@Substitution (
2227
2228
klass = "DataFrame" ,
2228
2229
type_sub = " and columns" ,
@@ -2233,17 +2234,98 @@ def to_html(
2233
2234
is used. By default, the setting in
2234
2235
``pandas.options.display.max_info_columns`` is used.
2235
2236
""" ,
2237
+ examples_sub = """
2238
+ >>> int_values = [1, 2, 3, 4, 5]
2239
+ >>> text_values = ['alpha', 'beta', 'gamma', 'delta', 'epsilon']
2240
+ >>> float_values = [0.0, 0.25, 0.5, 0.75, 1.0]
2241
+ >>> df = pd.DataFrame({"int_col": int_values, "text_col": text_values,
2242
+ ... "float_col": float_values})
2243
+ >>> df
2244
+ int_col text_col float_col
2245
+ 0 1 alpha 0.00
2246
+ 1 2 beta 0.25
2247
+ 2 3 gamma 0.50
2248
+ 3 4 delta 0.75
2249
+ 4 5 epsilon 1.00
2250
+
2251
+ Prints information of all columns:
2252
+
2253
+ >>> df.info(verbose=True)
2254
+ <class 'pandas.core.frame.DataFrame'>
2255
+ RangeIndex: 5 entries, 0 to 4
2256
+ Data columns (total 3 columns):
2257
+ # Column Non-Null Count Dtype
2258
+ --- ------ -------------- -----
2259
+ 0 int_col 5 non-null int64
2260
+ 1 text_col 5 non-null object
2261
+ 2 float_col 5 non-null float64
2262
+ dtypes: float64(1), int64(1), object(1)
2263
+ memory usage: 248.0+ bytes
2264
+
2265
+ Prints a summary of columns count and its dtypes but not per column
2266
+ information:
2267
+
2268
+ >>> df.info(verbose=False)
2269
+ <class 'pandas.core.frame.DataFrame'>
2270
+ RangeIndex: 5 entries, 0 to 4
2271
+ Columns: 3 entries, int_col to float_col
2272
+ dtypes: float64(1), int64(1), object(1)
2273
+ memory usage: 248.0+ bytes
2274
+
2275
+ Pipe output of DataFrame.info to buffer instead of sys.stdout, get
2276
+ buffer content and writes to a text file:
2277
+
2278
+ >>> import io
2279
+ >>> buffer = io.StringIO()
2280
+ >>> df.info(buf=buffer)
2281
+ >>> s = buffer.getvalue()
2282
+ >>> with open("df_info.txt", "w",
2283
+ ... encoding="utf-8") as f: # doctest: +SKIP
2284
+ ... f.write(s)
2285
+ 260
2286
+ The `memory_usage` parameter allows deep introspection mode, specially
2287
+ useful for big DataFrames and fine-tune memory optimization:
2288
+ >>> random_strings_array = np.random.choice(['a', 'b', 'c'], 10 ** 6)
2289
+ >>> df = pd.DataFrame({
2290
+ ... 'column_1': np.random.choice(['a', 'b', 'c'], 10 ** 6),
2291
+ ... 'column_2': np.random.choice(['a', 'b', 'c'], 10 ** 6),
2292
+ ... 'column_3': np.random.choice(['a', 'b', 'c'], 10 ** 6)
2293
+ ... })
2294
+ >>> df.info()
2295
+ <class 'pandas.core.frame.DataFrame'>
2296
+ RangeIndex: 1000000 entries, 0 to 999999
2297
+ Data columns (total 3 columns):
2298
+ # Column Non-Null Count Dtype
2299
+ --- ------ -------------- -----
2300
+ 0 column_1 1000000 non-null object
2301
+ 1 column_2 1000000 non-null object
2302
+ 2 column_3 1000000 non-null object
2303
+ dtypes: object(3)
2304
+ memory usage: 22.9+ MB
2305
+ >>> df.info(memory_usage='deep')
2306
+ <class 'pandas.core.frame.DataFrame'>
2307
+ RangeIndex: 1000000 entries, 0 to 999999
2308
+ Data columns (total 3 columns):
2309
+ # Column Non-Null Count Dtype
2310
+ --- ------ -------------- -----
2311
+ 0 column_1 1000000 non-null object
2312
+ 1 column_2 1000000 non-null object
2313
+ 2 column_3 1000000 non-null object
2314
+ dtypes: object(3)
2315
+ memory usage: 188.8 MB""" ,
2316
+ see_also_sub = """
2317
+ DataFrame.describe: Generate descriptive statistics of DataFrame
2318
+ columns.
2319
+ DataFrame.memory_usage: Memory usage of DataFrame columns.""" ,
2236
2320
)
2237
- @Appender (NDFrame .info .__doc__ )
2238
- def info (
2239
- self , verbose = None , buf = None , max_cols = None , memory_usage = None , null_counts = None
2240
- ):
2241
- return super ().info (verbose , buf , max_cols , memory_usage , null_counts )
2242
-
2243
- # ----------------------------------------------------------------------
2244
2321
@Appender (info .__doc__ )
2245
2322
def info (
2246
- self , verbose = None , buf = None , max_cols = None , memory_usage = None , null_counts = None
2323
+ self ,
2324
+ verbose : Optional [bool ] = None ,
2325
+ buf : Optional [IO [str ]] = None ,
2326
+ max_cols : Optional [int ] = None ,
2327
+ memory_usage : Optional [Union [bool , str ]] = None ,
2328
+ null_counts : Optional [bool ] = None ,
2247
2329
) -> None :
2248
2330
return info (self , verbose , buf , max_cols , memory_usage , null_counts )
2249
2331
0 commit comments