@@ -37,9 +37,9 @@ object.
37
37
* :ref: `read_feather<io.feather> `
38
38
* :ref: `read_sql<io.sql> `
39
39
* :ref: `read_json<io.json_reader> `
40
- * :ref: `read_msgpack<io.msgpack> ` (experimental)
40
+ * :ref: `read_msgpack<io.msgpack> `
41
41
* :ref: `read_html<io.read_html> `
42
- * :ref: `read_gbq<io.bigquery_reader> ` (experimental)
42
+ * :ref: `read_gbq<io.bigquery_reader> `
43
43
* :ref: `read_stata<io.stata_reader> `
44
44
* :ref: `read_sas<io.sas_reader> `
45
45
* :ref: `read_clipboard<io.clipboard> `
@@ -53,9 +53,9 @@ The corresponding ``writer`` functions are object methods that are accessed like
53
53
* :ref: `to_feather<io.feather> `
54
54
* :ref: `to_sql<io.sql> `
55
55
* :ref: `to_json<io.json_writer> `
56
- * :ref: `to_msgpack<io.msgpack> ` (experimental)
56
+ * :ref: `to_msgpack<io.msgpack> `
57
57
* :ref: `to_html<io.html> `
58
- * :ref: `to_gbq<io.bigquery_writer> ` (experimental)
58
+ * :ref: `to_gbq<io.bigquery_writer> `
59
59
* :ref: `to_stata<io.stata_writer> `
60
60
* :ref: `to_clipboard<io.clipboard> `
61
61
* :ref: `to_pickle<io.pickle> `
@@ -428,8 +428,8 @@ worth trying.
428
428
:okwarning:
429
429
430
430
df = pd.DataFrame({' col_1' : list (range (500000 )) + [' a' , ' b' ] + list (range (500000 ))})
431
- df.to_csv(' foo' )
432
- mixed_df = pd.read_csv(' foo' )
431
+ df.to_csv(' foo.csv ' )
432
+ mixed_df = pd.read_csv(' foo.csv ' )
433
433
mixed_df[' col_1' ].apply(type ).value_counts()
434
434
mixed_df[' col_1' ].dtype
435
435
@@ -438,6 +438,11 @@ worth trying.
438
438
data that was read in. It is important to note that the overall column will be
439
439
marked with a ``dtype `` of ``object ``, which is used for columns with mixed dtypes.
440
440
441
+ .. ipython :: python
442
+ :suppress:
443
+
444
+ os.remove(' foo.csv' )
445
+
441
446
.. _io.categorical :
442
447
443
448
Specifying Categorical dtype
@@ -570,6 +575,7 @@ The ``usecols`` argument can also be used to specify which columns not to
570
575
use in the final result:
571
576
572
577
.. ipython :: python
578
+
573
579
pd.read_csv(StringIO(data), usecols = lambda x : x not in [' a' , ' c' ])
574
580
575
581
In this case, the callable is specifying that we exclude the "a" and "c"
@@ -730,6 +736,13 @@ input text data into ``datetime`` objects.
730
736
731
737
The simplest case is to just pass in ``parse_dates=True ``:
732
738
739
+ .. ipython :: python
740
+ :suppress:
741
+
742
+ f = open (' foo.csv' ,' w' )
743
+ f.write(' date,A,B,C\n 20090101,a,1,2\n 20090102,b,3,4\n 20090103,c,4,5' )
744
+ f.close()
745
+
733
746
.. ipython :: python
734
747
735
748
# Use a column as an index, and parse it as dates.
@@ -2826,8 +2839,8 @@ any pickled pandas object (or any other pickled object) from file:
2826
2839
2827
2840
.. _io.msgpack :
2828
2841
2829
- msgpack (experimental)
2830
- ----------------------
2842
+ msgpack
2843
+ -------
2831
2844
2832
2845
.. versionadded :: 0.13.0
2833
2846
@@ -4547,8 +4560,8 @@ And then issue the following queries:
4547
4560
4548
4561
.. _io.bigquery :
4549
4562
4550
- Google BigQuery (Experimental)
4551
- ------------------------------
4563
+ Google BigQuery
4564
+ ---------------
4552
4565
4553
4566
.. versionadded :: 0.13.0
4554
4567
0 commit comments