@@ -70,7 +70,7 @@ data into a DataFrame object. They can take a number of arguments:
70
70
cases by "sniffing." The separator may be specified as a regular
71
71
expression; for instance you may use '\s *' to indicate arbitrary
72
72
whitespace.
73
- - ``dialect ``: string or csv.Dialect instance to expose more ways to specify
73
+ - ``dialect ``: string or :class: ` python: csv.Dialect` instance to expose more ways to specify
74
74
the file format
75
75
- ``header ``: row number to use as the column names, and the start of the data.
76
76
Defaults to 0 (first row); specify None if there is no header row.
@@ -164,7 +164,7 @@ You can also use a list of columns to create a hierarchical index:
164
164
165
165
The ``dialect `` keyword gives greater flexibility in specifying the file format.
166
166
By default it uses the Excel dialect but you can specify either the dialect name
167
- or a ` csv.Dialect < docs. python.org/library/ csv.html#csv. Dialect>`_ instance.
167
+ or a :class: ` ` python: csv.Dialect` ` instance.
168
168
169
169
.. ipython :: python
170
170
:suppress:
@@ -573,8 +573,8 @@ Automatically "sniffing" the delimiter
573
573
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
574
574
575
575
``read_csv `` is capable of inferring delimited (not necessarily
576
- comma-separated) files. YMMV, as pandas uses the Sniffer _ class of the csv
577
- module.
576
+ comma-separated) files. YMMV, as pandas uses the : class: ` python: csv.Sniffer `
577
+ class of the csv module.
578
578
579
579
.. ipython :: python
580
580
:suppress:
@@ -588,8 +588,6 @@ module.
588
588
print open (' tmp2.sv' ).read()
589
589
read_csv(' tmp2.sv' )
590
590
591
- .. _Sniffer : http://docs.python.org/library/csv.html#csv.Sniffer
592
-
593
591
.. _io.chunking :
594
592
595
593
Iterating through files chunk by chunk
0 commit comments