@@ -2872,18 +2872,21 @@ def interpolate(self, method='linear', axis=0, limit=None, inplace=False,
2872
2872
'polynomial', 'spline' 'piecewise_polynomial', 'pchip'}
2873
2873
2874
2874
* 'linear': ignore the index and treat the values as equally
2875
- spaced. default
2875
+ spaced. This is the only method supported on MultiIndexes.
2876
+ default
2876
2877
* 'time': interpolation works on daily and higher resolution
2877
2878
data to interpolate given length of interval
2878
2879
* 'index', 'values': use the actual numerical values of the index
2879
2880
* 'nearest', 'zero', 'slinear', 'quadratic', 'cubic',
2880
2881
'barycentric', 'polynomial' is passed to
2881
- `scipy.interpolate.interp1d` with the order given both
2882
+ `scipy.interpolate.interp1d` with the order given. Both
2882
2883
'polynomial' and 'spline' requre that you also specify and order
2883
- (int) e.g. df.interpolate(method='polynomial', order=4)
2884
+ (int) e.g. df.interpolate(method='polynomial', order=4). These
2885
+ use the actual numerical values of the index
2884
2886
* 'krogh', 'piecewise_polynomial', 'spline', and 'pchip' are all
2885
2887
wrappers around the scipy interpolation methods of similar
2886
- names. See the scipy documentation for more on their behavior:
2888
+ names. These use the actual numerical values of the index. See
2889
+ the scipy documentation for more on their behavior:
2887
2890
http://docs.scipy.org/doc/scipy/reference/interpolate.html#univariate-interpolation
2888
2891
http://docs.scipy.org/doc/scipy/reference/tutorial/interpolate.html
2889
2892
0 commit comments