@@ -3837,7 +3837,8 @@ def ewm(self, *args, **kwargs) -> ExponentialMovingWindowGroupby:
3837
3837
3838
3838
com : float, optional
3839
3839
Specify decay in terms of center of mass.
3840
- ``span``, ``halflife``, and ``alpha`` are alternative ways to specify decay.
3840
+ ``span``, ``halflife``, and ``alpha`` are alternative ways to specify
3841
+ decay.
3841
3842
span : float, optional
3842
3843
Specify decay in terms of span.
3843
3844
halflife : float, optional
@@ -3848,7 +3849,8 @@ def ewm(self, *args, **kwargs) -> ExponentialMovingWindowGroupby:
3848
3849
Minimum number of observations in the window required to have a value;
3849
3850
otherwise, result is ``np.nan``.
3850
3851
adjust : bool, default True
3851
- Divide by decaying adjustment factor to account for imbalance in relative weights.
3852
+ Divide by decaying adjustment factor to account for imbalance in
3853
+ relative weights.
3852
3854
ignore_na : bool, default False
3853
3855
Ignore missing values when calculating weights.
3854
3856
times : str or array-like of datetime64, optional
@@ -3858,8 +3860,9 @@ def ewm(self, *args, **kwargs) -> ExponentialMovingWindowGroupby:
3858
3860
3859
3861
Returns
3860
3862
-------
3861
- pandas.core.window.ExponentialMovingWindowGroupby
3862
- An object that supports exponentially weighted moving transformations over each group.
3863
+ pandas.api.typing.ExponentialMovingWindowGroupby
3864
+ An object that supports exponentially weighted moving transformations over
3865
+ each group.
3863
3866
3864
3867
See Also
3865
3868
--------
@@ -3885,7 +3888,7 @@ def ewm(self, *args, **kwargs) -> ExponentialMovingWindowGroupby:
3885
3888
4 B 50
3886
3889
5 B 60
3887
3890
3888
- >>> df.groupby("Class").ewm(com=0.5).mean().reset_index(drop=True)
3891
+ >>> df.groupby("Class").ewm(com=0.5).mean()
3889
3892
Value
3890
3893
0 10.000000
3891
3894
1 17.500000
0 commit comments