You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: doc/source/v0.11.0.txt
+57-25
Original file line number
Diff line number
Diff line change
@@ -3,7 +3,7 @@
3
3
v0.11.0 (March ??, 2013)
4
4
------------------------
5
5
6
-
This is a minor release from 0.10.1 and includes many new features and
6
+
This is a major release from 0.10.1 and includes many new features and
7
7
enhancements along with a large number of bug fixes. There are also a number of
8
8
important API changes that long-time pandas users should pay close attention
9
9
to.
@@ -13,7 +13,8 @@ API changes
13
13
14
14
Numeric dtypes will propagate and can coexist in DataFrames. If a dtype is passed (either directly via the ``dtype`` keyword, a passed ``ndarray``, or a passed ``Series``, then it will be preserved in DataFrame operations. Furthermore, different numeric dtypes will **NOT** be combined. The following example will give you a taste.
15
15
16
-
**Dtype Specification**
16
+
Dtype Specification
17
+
~~~~~~~~~~~~~~~~~~~
17
18
18
19
.. ipython:: python
19
20
@@ -29,7 +30,8 @@ Numeric dtypes will propagate and can coexist in DataFrames. If a dtype is passe
29
30
df3
30
31
df3.dtypes
31
32
32
-
**Dtype conversion**
33
+
Dtype Conversion
34
+
~~~~~~~~~~~~~~~~
33
35
34
36
.. ipython:: python
35
37
@@ -54,6 +56,26 @@ Numeric dtypes will propagate and can coexist in DataFrames. If a dtype is passe
54
56
Timestamp('20010104'), '20010105'],dtype='O')
55
57
s.convert_objects(convert_dates='coerce')
56
58
59
+
Dtype Gotchas
60
+
~~~~~~~~~~~~~
61
+
62
+
**Platform Gotchas**
63
+
64
+
Starting in 0.11.0, construction of DataFrame/Series will use default dtypes of ``int64`` and ``float64``,
65
+
*regardless of platform*. This is not an apparent change from earlier versions of pandas. If you specify
66
+
dtypes, they *WILL* be respected, however (GH2837_)
67
+
68
+
The following will all result in ``int64`` dtypes
69
+
70
+
.. ipython:: python
71
+
72
+
DataFrame([1,2],columns=['a']).dtypes
73
+
DataFrame({'a' : [1,2] }).dtypes
74
+
DataFrame({'a' : 1 }, index=range(2)).dtypes
75
+
76
+
Keep in mind that ``DataFrame(np.array([1,2]))`` **WILL** result in ``int32`` on 32-bit platforms!
77
+
78
+
57
79
**Upcasting Gotchas**
58
80
59
81
Performing indexing operations on integer type data can easily upcast the data.
@@ -82,21 +104,13 @@ While float dtypes are unchanged.
82
104
casted
83
105
casted.dtypes
84
106
85
-
New features
86
-
~~~~~~~~~~~~
87
-
88
-
**Enhancements**
107
+
Datetimes Conversion
108
+
~~~~~~~~~~~~~~~~~~~~
89
109
90
-
- In ``HDFStore``, provide dotted attribute access to ``get`` from stores (e.g. store.df == store['df'])
91
-
92
-
**Bug Fixes**
93
-
94
-
See the `full release notes
95
-
<https://github.com/pydata/pandas/blob/master/RELEASE.rst>`__ or issue tracker
96
-
on GitHub for a complete list.
97
-
98
-
99
-
Datetime64[ns] columns in a DataFrame (or a Series) allow the use of ``np.nan`` to indicate a nan value, in addition to the traditional ``NaT``, or not-a-time. This allows convenient nan setting in a generic way. Furthermore datetime64 columns are created by default, when passed datetimelike objects (*this change was introduced in 0.10.1*)
110
+
Datetime64[ns] columns in a DataFrame (or a Series) allow the use of ``np.nan`` to indicate a nan value,
111
+
in addition to the traditional ``NaT``, or not-a-time. This allows convenient nan setting in a generic way.
112
+
Furthermore ``datetime64[ns]`` columns are created by default, when passed datetimelike objects (*this change was introduced in 0.10.1*)
113
+
(GH2809_, GH2810_)
100
114
101
115
.. ipython:: python
102
116
@@ -111,8 +125,7 @@ Datetime64[ns] columns in a DataFrame (or a Series) allow the use of ``np.nan``
111
125
df.ix[2:4,['A','timestamp']] = np.nan
112
126
df
113
127
114
-
Astype conversion on datetime64[ns] to object, implicity converts ``NaT`` to ``np.nan``
115
-
128
+
Astype conversion on ``datetime64[ns]`` to ``object``, implicity converts ``NaT`` to ``np.nan``
116
129
117
130
.. ipython:: python
118
131
@@ -127,13 +140,32 @@ Astype conversion on datetime64[ns] to object, implicity converts ``NaT`` to ``n
127
140
s.dtype
128
141
129
142
130
-
``Squeeze`` to possibly remove length 1 dimensions from an object.
143
+
New features
144
+
~~~~~~~~~~~~
131
145
132
-
.. ipython:: python
146
+
**Enhancements**
147
+
148
+
- In ``HDFStore``, provide dotted attribute access to ``get`` from stores
149
+
(e.g. store.df == store['df'])
150
+
151
+
- ``Squeeze`` to possibly remove length 1 dimensions from an object.
133
152
134
-
p = Panel(randn(3,4,4),items=['ItemA','ItemB','ItemC'],
153
+
.. ipython:: python
154
+
155
+
p = Panel(randn(3,4,4),items=['ItemA','ItemB','ItemC'],
135
156
major_axis=date_range('20010102',periods=4),
136
157
minor_axis=['A','B','C','D'])
137
-
p
138
-
p.reindex(items=['ItemA']).squeeze()
139
-
p.reindex(items=['ItemA'],minor=['B']).squeeze()
158
+
p
159
+
p.reindex(items=['ItemA']).squeeze()
160
+
p.reindex(items=['ItemA'],minor=['B']).squeeze()
161
+
162
+
**Bug Fixes**
163
+
164
+
See the `full release notes
165
+
<https://github.com/pydata/pandas/blob/master/RELEASE.rst>`__ or issue tracker
0 commit comments