@@ -1980,58 +1980,87 @@ def plot_series(data, kind='line', ax=None, # Series unique
1980
1980
1981
1981
1982
1982
_shared_docs ['boxplot' ] = """
1983
- Make a box-and-whisker plot from DataFrame column optionally grouped
1984
- by some columns or other inputs. The box extends from the Q1 to Q3
1985
- quartile values of the data, with a line at the median (Q2).
1986
- The whiskers extend from the edges of box to show the range of the data.
1987
- Flier points (outliers) are those past the end of the whiskers.
1988
- The position of the whiskers is set by default to 1.5 IQR (`whis=1.5``)
1989
- from the edge of the box.
1983
+ Make a box plot from DataFrame columns.
1984
+
1985
+ Make a box-and-whisker plot from DataFrame columns optionally grouped
1986
+ by some other columns. A box plot is a method for graphically depicting
1987
+ groups of numerical data through their quartiles.
1988
+ The box extends from the Q1 to Q3 quartile values of the data,
1989
+ with a line at the median (Q2).The whiskers extend from the edges
1990
+ of box to show the range of the data. The position of the whiskers
1991
+ is set by default to 1.5*IQR (IQR = Q3 - Q1) from the edges of the box.
1992
+ Outlier points are those past the end of the whiskers.
1990
1993
1991
1994
For further details see
1992
- Wikipedia's entry for `boxplot <https://en.wikipedia.org/wiki/Box_plot/ >`_.
1995
+ Wikipedia's entry for `boxplot <https://en.wikipedia.org/wiki/Box_plot>`_.
1993
1996
1994
1997
Parameters
1995
1998
----------
1996
- column : column name or list of names, or vector
1999
+ column : str or list of str, optional
2000
+ Column name or list of names, or vector.
1997
2001
Can be any valid input to groupby.
1998
- by : string or sequence
2002
+ by : str or array-like
1999
2003
Column in the DataFrame to groupby.
2000
- ax : Matplotlib axes object, ( default `None`)
2004
+ ax : object of class matplotlib.axes.Axes, default `None`
2001
2005
The matplotlib axes to be used by boxplot.
2002
- fontsize : int or string
2003
- The font-size used by matplotlib.
2004
- rot : label rotation angle
2005
- The rotation angle of labels.
2006
- grid : boolean( default `True`)
2006
+ fontsize : float or str
2007
+ Tick label font size in points or as a string (e.g., ‘large’)
2008
+ (see `matplotlib.axes.Axes.tick_params
2009
+ <https://matplotlib.org/api/_as_gen/
2010
+ matplotlib.axes.Axes.tick_params.html>`_).
2011
+ rot : int or float, default 0
2012
+ The rotation angle of labels (in degrees)
2013
+ with respect to the screen coordinate sytem.
2014
+ grid : boolean, default `True`
2007
2015
Setting this to True will show the grid.
2008
2016
figsize : A tuple (width, height) in inches
2009
- The size of the figure to create in inches by default.
2010
- layout : tuple (optional)
2011
- Tuple (rows, columns) used for the layout of the plot.
2012
- return_type : {None, 'axes', 'dict', 'both'}, default None
2013
- The kind of object to return. The default is ``axes``
2014
- 'axes' returns the matplotlib axes the boxplot is drawn on;
2015
- 'dict' returns a dictionary whose values are the matplotlib
2016
- Lines of the boxplot;
2017
- 'both' returns a namedtuple with the axes and dict.
2018
- When grouping with ``by``, a Series mapping columns to ``return_type``
2019
- is returned, unless ``return_type`` is None, in which case a NumPy
2020
- array of axes is returned with the same shape as ``layout``.
2021
- See the prose documentation for more.
2022
- kwds : Keyword Arguments (optional)
2017
+ The size of the figure to create in matplotlib.
2018
+ layout : tuple (rows, columns) (optional)
2019
+ For example, (3, 5) will display the subplots
2020
+ using 3 columns and 5 rows, starting from the top-left.
2021
+ return_type : {None, 'axes', 'dict', 'both'}, default 'axes'
2022
+ The kind of object to return. The default is ``axes``.
2023
+
2024
+ * 'axes' returns the matplotlib axes the boxplot is drawn on.
2025
+ * 'dict' returns a dictionary whose values are the matplotlib
2026
+ Lines of the boxplot.
2027
+ * 'both' returns a namedtuple with the axes and dict.
2028
+ * when grouping with ``by``, a Series mapping columns to
2029
+ ``return_type`` is returned (i.e.
2030
+ ``df.boxplot(column=['Col1','Col2'], by='var',return_type='axes')``
2031
+ may return ``Series([AxesSubplot(..),AxesSubplot(..)],
2032
+ index=['Col1','Col2'])``).
2033
+
2034
+ If ``return_type`` is `None`, a NumPy array
2035
+ of axes with the same shape as ``layout`` is returned
2036
+ (i.e. ``df.boxplot(column=['Col1','Col2'],
2037
+ by='var',return_type=None)`` may return a
2038
+ ``array([<matplotlib.axes._subplots.AxesSubplot object at ..>,
2039
+ <matplotlib.axes._subplots.AxesSubplot object at ..>],
2040
+ dtype=object)``).
2041
+ **kwds : Keyword Arguments (optional)
2023
2042
All other plotting keyword arguments to be passed to
2024
- matplotlib's function.
2043
+ `matplotlib.pyplot.boxplot <https://matplotlib.org/api/_as_gen/
2044
+ matplotlib.pyplot.boxplot.html#matplotlib.pyplot.boxplot>`_.
2025
2045
2026
2046
Returns
2027
2047
-------
2028
- lines : dict
2029
- ax : matplotlib Axes
2030
- (ax, lines): namedtuple
2048
+ result:
2049
+ Options:
2050
+
2051
+ * ax : object of class
2052
+ matplotlib.axes.Axes (for ``return_type='axes'``)
2053
+ * lines : dict (for ``return_type='dict'``)
2054
+ * (ax, lines): namedtuple (for ``return_type='both'``)
2055
+ * :class:`~pandas.Series` (for ``return_type != None``
2056
+ and data grouped with ``by``)
2057
+ * :class:`~numpy.array` (for ``return_type=None``
2058
+ and data grouped with ``by``)
2031
2059
2032
2060
See Also
2033
2061
--------
2034
2062
matplotlib.pyplot.boxplot: Make a box and whisker plot.
2063
+ matplotlib.pyplot.hist: Make a hsitogram.
2035
2064
2036
2065
Notes
2037
2066
-----
@@ -2041,72 +2070,57 @@ def plot_series(data, kind='line', ax=None, # Series unique
2041
2070
2042
2071
Examples
2043
2072
--------
2073
+
2074
+ Boxplots can be created for every column in the dataframe
2075
+ by ``df.boxplot()`` or indicating the columns to be used:
2076
+
2044
2077
.. plot::
2045
2078
:context: close-figs
2046
2079
2047
2080
>>> np.random.seed(1234)
2081
+ >>> df = pd.DataFrame(np.random.rand(10,4),
2082
+ ... columns=['Col1', 'Col2', 'Col3', 'Col4'])
2083
+ >>> boxplot = df.boxplot(column=['Col1', 'Col2', 'Col3'])
2048
2084
2049
- >>> df = pd.DataFrame({
2050
- ... u'stratifying_var': np.random.uniform(0, 100, 20),
2051
- ... u'price': np.random.normal(100, 5, 20),
2052
- ... u'demand': np.random.normal(100, 10, 20)})
2053
-
2054
- >>> df[u'quartiles'] = pd.qcut(
2055
- ... df[u'stratifying_var'], 4,
2056
- ... labels=[u'0-25%%', u'25-50%%', u'50-75%%', u'75-100%%'])
2057
-
2058
- >>> df
2059
- stratifying_var price demand quartiles
2060
- 0 19.151945 106.605791 108.416747 0-25%%
2061
- 1 62.210877 92.265472 123.909605 50-75%%
2062
- 2 43.772774 98.986768 100.761996 25-50%%
2063
- 3 78.535858 96.720153 94.335541 75-100%%
2064
- 4 77.997581 100.967107 100.361419 50-75%%
2065
- 5 27.259261 102.767195 79.250224 0-25%%
2066
- 6 27.646426 106.590758 102.477922 0-25%%
2067
- 7 80.187218 97.653474 91.028432 75-100%%
2068
- 8 95.813935 103.377770 98.632052 75-100%%
2069
- 9 87.593263 90.914864 100.182892 75-100%%
2070
- 10 35.781727 99.084457 107.554140 0-25%%
2071
- 11 50.099513 105.294846 102.152686 25-50%%
2072
- 12 68.346294 98.010799 108.410088 50-75%%
2073
- 13 71.270203 101.687188 85.541899 50-75%%
2074
- 14 37.025075 105.237893 85.980267 25-50%%
2075
- 15 56.119619 105.229691 98.990818 25-50%%
2076
- 16 50.308317 104.318586 94.517576 25-50%%
2077
- 17 1.376845 99.389542 98.553805 0-25%%
2078
- 18 77.282662 100.623565 103.540203 50-75%%
2079
- 19 88.264119 98.386026 99.644870 75-100%%
2080
-
2081
- To plot the boxplot of the ``demand`` just put:
2085
+ Boxplots of variables distributions grouped by a third variable values
2086
+ can be created using the option ``by``. For instance:
2082
2087
2083
2088
.. plot::
2084
2089
:context: close-figs
2085
2090
2086
- >>> boxplot = df.boxplot(column=u'demand', by=u'quartiles')
2091
+ >>> df = pd.DataFrame(np.random.rand(10,2), columns=['Col1', 'Col2'] )
2092
+ >>> df['X'] = pd.Series(['A','A','A','A','A','B','B','B','B','B'])
2093
+ >>> boxplot = df.boxplot(by='X')
2087
2094
2088
- Use ``grid=False`` to hide the grid:
2095
+ A list of strings (i.e. ``['X','Y']``) containing can be passed to boxplot
2096
+ in order to group the data by combination of the variables in the x-axis:
2089
2097
2090
2098
.. plot::
2091
2099
:context: close-figs
2092
2100
2093
- >>> boxplot = df.boxplot(column=u'demand', by=u'quartiles', grid=False)
2101
+ >>> df = pd.DataFrame(np.random.rand(10,3),
2102
+ ... columns=['Col1', 'Col2', 'Col3'])
2103
+ >>> df['X'] = pd.Series(['A','A','A','A','A','B','B','B','B','B'])
2104
+ >>> df['Y'] = pd.Series(['A','B','A','B','A','B','A','B','A','B'])
2105
+ >>> boxplot = df.boxplot(column=['Col1','Col2'], by=['X','Y'])
2094
2106
2095
- Optionally, the layout can be changed by setting ``layout=(rows, cols) ``:
2107
+ The layout of boxplot can be adjusted giving a tuple to ``layout``:
2096
2108
2097
2109
.. plot::
2098
2110
:context: close-figs
2099
2111
2100
- >>> boxplot = df.boxplot(column=[u'price',u'demand'],
2101
- ... by=u'quartiles', layout=(1,2),
2102
- ... figsize=(8,5))
2112
+ >>> df = pd.DataFrame(np.random.rand(10,2), columns=['Col1', 'Col2'])
2113
+ >>> df['X'] = pd.Series(['A','A','A','A','A','B','B','B','B','B'])
2114
+ >>> boxplot = df.boxplot(by='X', layout=(2,1))
2115
+
2116
+ Additional formatting can be done to the boxplot, like suppressing the grid
2117
+ (``grid=False``), rotating the labels in the x-axis (i.e. ``rot=45``)
2118
+ or changing the fontsize (i.e. ``fontsize=15``):
2103
2119
2104
2120
.. plot::
2105
2121
:context: close-figs
2106
2122
2107
- >>> boxplot = df.boxplot(column=[u'price',u'demand'],
2108
- ... by=u'quartiles', layout=(2,1),
2109
- ... figsize=(5,8))
2123
+ >>> boxplot = df.boxplot(grid=False, rot=45, fontsize=15)
2110
2124
"""
2111
2125
2112
2126
@Appender (_shared_docs ['boxplot' ] % _shared_doc_kwargs )
0 commit comments