@@ -326,73 +326,47 @@ def test_factorize_na_sentinel(self, sort, na_sentinel, data, uniques):
326
326
tm .assert_extension_array_equal (uniques , expected_uniques )
327
327
328
328
@pytest .mark .parametrize (
329
- "data, dropna, expected_codes, expected_uniques" ,
329
+ "data, expected_codes, expected_uniques" ,
330
330
[
331
331
(
332
332
["a" , None , "b" , "a" ],
333
- True ,
334
- np .array ([0 , - 1 , 1 , 0 ], dtype = np .dtype ("intp" )),
335
- np .array (["a" , "b" ], dtype = object ),
336
- ),
337
- (
338
- ["a" , np .nan , "b" , "a" ],
339
- True ,
340
- np .array ([0 , - 1 , 1 , 0 ], dtype = np .dtype ("intp" )),
341
- np .array (["a" , "b" ], dtype = object ),
342
- ),
343
- (
344
- ["a" , None , "b" , "a" ],
345
- False ,
346
333
np .array ([0 , 2 , 1 , 0 ], dtype = np .dtype ("intp" )),
347
334
np .array (["a" , "b" , np .nan ], dtype = object ),
348
335
),
349
336
(
350
337
["a" , np .nan , "b" , "a" ],
351
- False ,
352
338
np .array ([0 , 2 , 1 , 0 ], dtype = np .dtype ("intp" )),
353
339
np .array (["a" , "b" , np .nan ], dtype = object ),
354
340
),
355
341
],
356
342
)
357
- def test_object_factorize_dropna (
358
- self , data , dropna , expected_codes , expected_uniques
343
+ def test_object_factorize_na_sentinel_none (
344
+ self , data , expected_codes , expected_uniques
359
345
):
360
- codes , uniques = algos .factorize (data , dropna = dropna )
346
+ codes , uniques = algos .factorize (data , na_sentinel = None )
361
347
362
348
tm .assert_numpy_array_equal (uniques , expected_uniques )
363
349
tm .assert_numpy_array_equal (codes , expected_codes )
364
350
365
351
@pytest .mark .parametrize (
366
- "data, dropna, expected_codes, expected_uniques" ,
352
+ "data, expected_codes, expected_uniques" ,
367
353
[
368
354
(
369
355
[1 , None , 1 , 2 ],
370
- True ,
371
- np .array ([0 , - 1 , 0 , 1 ], dtype = np .dtype ("intp" )),
372
- np .array ([1 , 2 ], dtype = "O" ),
373
- ),
374
- (
375
- [1 , np .nan , 1 , 2 ],
376
- True ,
377
- np .array ([0 , - 1 , 0 , 1 ], dtype = np .dtype ("intp" )),
378
- np .array ([1 , 2 ], dtype = np .float64 ),
379
- ),
380
- (
381
- [1 , None , 1 , 2 ],
382
- False ,
383
356
np .array ([0 , 2 , 0 , 1 ], dtype = np .dtype ("intp" )),
384
357
np .array ([1 , 2 , np .nan ], dtype = "O" ),
385
358
),
386
359
(
387
360
[1 , np .nan , 1 , 2 ],
388
- False ,
389
361
np .array ([0 , 2 , 0 , 1 ], dtype = np .dtype ("intp" )),
390
362
np .array ([1 , 2 , np .nan ], dtype = np .float64 ),
391
363
),
392
364
],
393
365
)
394
- def test_int_factorize_dropna (self , data , dropna , expected_codes , expected_uniques ):
395
- codes , uniques = algos .factorize (data , dropna = dropna )
366
+ def test_int_factorize_na_sentinel_none (
367
+ self , data , expected_codes , expected_uniques
368
+ ):
369
+ codes , uniques = algos .factorize (data , na_sentinel = None )
396
370
397
371
tm .assert_numpy_array_equal (uniques , expected_uniques )
398
372
tm .assert_numpy_array_equal (codes , expected_codes )
0 commit comments