@@ -1005,20 +1005,20 @@ def interpolate(
1005
1005
----------
1006
1006
method : str, default 'linear'
1007
1007
Interpolation technique to use. One of:
1008
- * 'linear': Ignore the index and treat the values as equally spaced.
1008
+ * 'linear': Ignore the index and treat the values as equally spaced.
1009
1009
This is the only method supported on MultiIndexes.
1010
- * 'time': Works on daily and higher resolution data to interpolate
1010
+ * 'time': Works on daily and higher resolution data to interpolate
1011
1011
given length of interval.
1012
1012
* 'index', 'values': use the actual numerical values of the index.
1013
1013
* 'pad': Fill in NaNs using existing values.
1014
- * 'nearest', 'zero', 'slinear', 'quadratic', 'cubic', 'barycentric',
1015
- 'polynomial': Passed to scipy.interpolate.interp1d, whereas 'spline'
1016
- is passed to scipy.interpolate.UnivariateSpline. These methods use
1014
+ * 'nearest', 'zero', 'slinear', 'quadratic', 'cubic', 'barycentric',
1015
+ 'polynomial': Passed to scipy.interpolate.interp1d, whereas 'spline'
1016
+ is passed to scipy.interpolate.UnivariateSpline. These methods use
1017
1017
the numerical values of the index.
1018
- Both 'polynomial' and 'spline' require that you also specify an
1018
+ Both 'polynomial' and 'spline' require that you also specify an
1019
1019
order (int), e.g. arr.interpolate(method='polynomial', order=5).
1020
- * 'krogh', 'piecewise_polynomial', 'spline', 'pchip', 'akima',
1021
- 'cubicspline': Wrappers around the SciPy interpolation methods
1020
+ * 'krogh', 'piecewise_polynomial', 'spline', 'pchip', 'akima',
1021
+ 'cubicspline': Wrappers around the SciPy interpolation methods
1022
1022
of similar names. See Notes.
1023
1023
* 'from_derivatives': Refers to scipy.interpolate.BPoly.from_derivatives.
1024
1024
axis : int
@@ -1030,14 +1030,14 @@ def interpolate(
1030
1030
limit_direction : {'forward', 'backward', 'both'}
1031
1031
Consecutive NaNs will be filled in this direction.
1032
1032
* If 'method' is 'pad' or 'ffill', 'limit_direction' must be 'forward'.
1033
- * If 'method' is 'backfill' or 'bfill', 'limit_direction' must be
1033
+ * If 'method' is 'backfill' or 'bfill', 'limit_direction' must be
1034
1034
'backward'.
1035
- Raises ValueError if limit_direction is 'forward' or 'both' and method
1035
+ Raises ValueError if limit_direction is 'forward' or 'both' and method
1036
1036
is 'backfill' or 'bfill'.
1037
- Raises ValueError if limit_direction is 'backward' or 'both' and method
1037
+ Raises ValueError if limit_direction is 'backward' or 'both' and method
1038
1038
is 'pad' or 'ffill'.
1039
1039
limit_area : {'inside', 'outside'} or None
1040
- If limit is specified, consecutive NaNs will be filled with this
1040
+ If limit is specified, consecutive NaNs will be filled with this
1041
1041
restriction.
1042
1042
* None: No fill restriction.
1043
1043
* 'inside': Only fill NaNs surrounded by valid values (interpolate).
@@ -1060,11 +1060,11 @@ def interpolate(
1060
1060
Notes
1061
1061
-----
1062
1062
- All parameters must be specified as keyword arguments.
1063
- - The 'krogh', 'piecewise_polynomial', 'spline', 'pchip' and 'akima'
1064
- methods are wrappers around the respective SciPy implementations of
1063
+ - The 'krogh', 'piecewise_polynomial', 'spline', 'pchip' and 'akima'
1064
+ methods are wrappers around the respective SciPy implementations of
1065
1065
similar names. These use the actual numerical values of the index.
1066
1066
- For 1D NumpyExtensionArray, use 0 for the `axis` parameter.
1067
-
1067
+
1068
1068
Examples
1069
1069
--------
1070
1070
>>> arr = pd.arrays.NumpyExtensionArray(np.array([0, np.nan, 2, np.nan, 4]))
0 commit comments