@@ -1104,18 +1104,19 @@ cdef class Day(Tick):
1104
1104
Examples
1105
1105
--------
1106
1106
You can use the parameter ``n`` to represent a shift of n days.
1107
+
1107
1108
>>> from pandas.tseries.offsets import Day
1108
1109
>>> ts = pd.Timestamp(2022, 12, 9, 15)
1109
- >>> ts.strftime(' %a %d %b %Y %H : %M ')
1110
- 'Fri 09 Dec 2022 15:00'
1110
+ >>> ts
1111
+ Timestamp('2022-12- 09 15:00:00')
1111
1112
1112
- >>> ( ts + Day()).strftime(' %a %d %b %Y %H : %M ' )
1113
- 'Sat 10 Dec 2022 15:00'
1114
- >>> ( ts - Day(4)).strftime(' %a %d %b %Y %H : %M ' )
1115
- 'Mon 05 Dec 2022 15:00'
1113
+ >>> ts + Day()
1114
+ Timestamp('2022-12- 10 15:00:00')
1115
+ >>> ts - Day(4)
1116
+ Timestamp('2022-12- 05 15:00:00')
1116
1117
1117
- >>> ( ts + Day(-4)).strftime(' %a %d %b %Y %H : %M ' )
1118
- 'Mon 05 Dec 2022 15:00'
1118
+ >>> ts + Day(-4)
1119
+ Timestamp('2022-12- 05 15:00:00')
1119
1120
"""
1120
1121
_nanos_inc = 24 * 3600 * 1 _000_000_000
1121
1122
_prefix = " D"
@@ -1142,16 +1143,16 @@ cdef class Hour(Tick):
1142
1143
1143
1144
>>> from pandas.tseries.offsets import Hour
1144
1145
>>> ts = pd.Timestamp(2022, 12, 9, 15)
1145
- >>> ts.strftime(' %a %d %b %Y %H : %M ')
1146
- 'Fri 09 Dec 2022 15:00'
1146
+ >>> ts
1147
+ Timestamp('2022-12- 09 15:00:00')
1147
1148
1148
- >>> ( ts + Hour()).strftime(' %a %d %b %Y %H : %M ' )
1149
- 'Fri 09 Dec 2022 16:00'
1150
- >>> ( ts - Hour(4)).strftime(' %a %d %b %Y %H : %M ' )
1151
- 'Fri 09 Dec 2022 11:00'
1149
+ >>> ts + Hour()
1150
+ Timestamp('2022-12- 09 16:00:00')
1151
+ >>> ts - Hour(4)
1152
+ Timestamp('2022-12- 09 11:00:00')
1152
1153
1153
- >>> ( ts + Hour(-4)).strftime(' %a %d %b %Y %H : %M ' )
1154
- 'Fri 09 Dec 2022 11:00'
1154
+ >>> ts + Hour(-4)
1155
+ Timestamp('2022-12- 09 11:00:00')
1155
1156
"""
1156
1157
_nanos_inc = 3600 * 1 _000_000_000
1157
1158
_prefix = " H"
@@ -1178,16 +1179,16 @@ cdef class Minute(Tick):
1178
1179
1179
1180
>>> from pandas.tseries.offsets import Minute
1180
1181
>>> ts = pd.Timestamp(2022, 12, 9, 15)
1181
- >>> ts.strftime(' %a %d %b %Y %H : %M : %S ')
1182
- 'Fri 09 Dec 2022 15:00:00'
1182
+ >>> ts
1183
+ Timestamp('2022-12- 09 15:00:00')
1183
1184
1184
- >>> ( ts + Minute(n=10)).strftime(' %a %d %b %Y %H : %M : %S ' )
1185
- 'Fri 09 Dec 2022 15:10:00'
1186
- >>> ( ts - Minute(n=10)).strftime(' %a %d %b %Y %H : %M : %S ' )
1187
- 'Fri 09 Dec 2022 14:50:00'
1185
+ >>> ts + Minute(n=10)
1186
+ Timestamp('2022-12- 09 15:10:00')
1187
+ >>> ts - Minute(n=10)
1188
+ Timestamp('2022-12- 09 14:50:00')
1188
1189
1189
- >>> ( ts + Minute(n=-10)).strftime(' %a %d %b %Y %H : %M : %S ' )
1190
- 'Fri 09 Dec 2022 14:50:00'
1190
+ >>> ts + Minute(n=-10)
1191
+ Timestamp('2022-12- 09 14:50:00')
1191
1192
"""
1192
1193
_nanos_inc = 60 * 1 _000_000_000
1193
1194
_prefix = " T"
@@ -1214,16 +1215,16 @@ cdef class Second(Tick):
1214
1215
1215
1216
>>> from pandas.tseries.offsets import Second
1216
1217
>>> ts = pd.Timestamp(2022, 12, 9, 15)
1217
- >>> ts.strftime(' %a %d %b %Y %H : %M : %S ')
1218
- 'Fri 09 Dec 2022 15:00:00'
1218
+ >>> ts
1219
+ Timestamp('2022-12- 09 15:00:00')
1219
1220
1220
- >>> ( ts + Second(n=10)).strftime(' %a %d %b %Y %H : %M : %S ' )
1221
- 'Fri 09 Dec 2022 15:00:10'
1222
- >>> ( ts - Second(n=10)).strftime(' %a %d %b %Y %H : %M : %S ' )
1223
- 'Fri 09 Dec 2022 14:59:50'
1221
+ >>> ts + Second(n=10)
1222
+ Timestamp('2022-12- 09 15:00:10')
1223
+ >>> ts - Second(n=10)
1224
+ Timestamp('2022-12- 09 14:59:50')
1224
1225
1225
- >>> ( ts + Second(n=-10)).strftime(' %a %d %b %Y %H : %M : %S ' )
1226
- 'Fri 09 Dec 2022 14:59:50'
1226
+ >>> ts + Second(n=-10)
1227
+ Timestamp('2022-12- 09 14:59:50')
1227
1228
"""
1228
1229
_nanos_inc = 1 _000_000_000
1229
1230
_prefix = " S"
0 commit comments