Skip to content

Commit 990bdc7

Browse files
committed
TST (string dtype): fix sql xfails with using_infer_string
1 parent 9b16b9e commit 990bdc7

File tree

4 files changed

+43
-18
lines changed

4 files changed

+43
-18
lines changed

pandas/core/dtypes/cast.py

+2
Original file line numberDiff line numberDiff line change
@@ -1162,6 +1162,7 @@ def convert_dtypes(
11621162

11631163
def maybe_infer_to_datetimelike(
11641164
value: npt.NDArray[np.object_],
1165+
convert_to_nullable_dtype: bool = False,
11651166
) -> np.ndarray | DatetimeArray | TimedeltaArray | PeriodArray | IntervalArray:
11661167
"""
11671168
we might have a array (or single object) that is datetime like,
@@ -1199,6 +1200,7 @@ def maybe_infer_to_datetimelike(
11991200
# numpy would have done it for us.
12001201
convert_numeric=False,
12011202
convert_non_numeric=True,
1203+
convert_to_nullable_dtype=convert_to_nullable_dtype,
12021204
dtype_if_all_nat=np.dtype("M8[s]"),
12031205
)
12041206

pandas/core/internals/construction.py

+3-2
Original file line numberDiff line numberDiff line change
@@ -966,8 +966,9 @@ def convert(arr):
966966
if dtype is None:
967967
if arr.dtype == np.dtype("O"):
968968
# i.e. maybe_convert_objects didn't convert
969-
arr = maybe_infer_to_datetimelike(arr)
970-
if dtype_backend != "numpy" and arr.dtype == np.dtype("O"):
969+
convert_to_nullable_dtype = dtype_backend != "numpy"
970+
arr = maybe_infer_to_datetimelike(arr, convert_to_nullable_dtype)
971+
if convert_to_nullable_dtype and arr.dtype == np.dtype("O"):
971972
new_dtype = StringDtype()
972973
arr_cls = new_dtype.construct_array_type()
973974
arr = arr_cls._from_sequence(arr, dtype=new_dtype)

pandas/io/sql.py

+19-2
Original file line numberDiff line numberDiff line change
@@ -45,6 +45,8 @@
4545
from pandas.core.dtypes.common import (
4646
is_dict_like,
4747
is_list_like,
48+
is_object_dtype,
49+
is_string_dtype,
4850
)
4951
from pandas.core.dtypes.dtypes import (
5052
ArrowDtype,
@@ -58,6 +60,7 @@
5860
Series,
5961
)
6062
from pandas.core.arrays import ArrowExtensionArray
63+
from pandas.core.arrays.string_ import StringDtype
6164
from pandas.core.base import PandasObject
6265
import pandas.core.common as com
6366
from pandas.core.common import maybe_make_list
@@ -1316,7 +1319,12 @@ def _harmonize_columns(
13161319
elif dtype_backend == "numpy" and col_type is float:
13171320
# floats support NA, can always convert!
13181321
self.frame[col_name] = df_col.astype(col_type)
1319-
1322+
elif (
1323+
using_string_dtype()
1324+
and is_string_dtype(col_type)
1325+
and is_object_dtype(self.frame[col_name])
1326+
):
1327+
self.frame[col_name] = df_col.astype(col_type)
13201328
elif dtype_backend == "numpy" and len(df_col) == df_col.count():
13211329
# No NA values, can convert ints and bools
13221330
if col_type is np.dtype("int64") or col_type is bool:
@@ -1403,6 +1411,7 @@ def _get_dtype(self, sqltype):
14031411
DateTime,
14041412
Float,
14051413
Integer,
1414+
String,
14061415
)
14071416

14081417
if isinstance(sqltype, Float):
@@ -1422,6 +1431,10 @@ def _get_dtype(self, sqltype):
14221431
return date
14231432
elif isinstance(sqltype, Boolean):
14241433
return bool
1434+
elif isinstance(sqltype, String):
1435+
if using_string_dtype():
1436+
return StringDtype(na_value=np.nan)
1437+
14251438
return object
14261439

14271440

@@ -2205,7 +2218,7 @@ def read_table(
22052218
elif using_string_dtype():
22062219
from pandas.io._util import arrow_string_types_mapper
22072220

2208-
arrow_string_types_mapper()
2221+
mapping = arrow_string_types_mapper()
22092222
else:
22102223
mapping = None
22112224

@@ -2286,6 +2299,10 @@ def read_query(
22862299
from pandas.io._util import _arrow_dtype_mapping
22872300

22882301
mapping = _arrow_dtype_mapping().get
2302+
elif using_string_dtype():
2303+
from pandas.io._util import arrow_string_types_mapper
2304+
2305+
mapping = arrow_string_types_mapper()
22892306
else:
22902307
mapping = None
22912308

pandas/tests/io/test_sql.py

+19-14
Original file line numberDiff line numberDiff line change
@@ -18,8 +18,6 @@
1818
import numpy as np
1919
import pytest
2020

21-
from pandas._config import using_string_dtype
22-
2321
from pandas._libs import lib
2422
from pandas.compat import pa_version_under14p1
2523
from pandas.compat._optional import import_optional_dependency
@@ -60,7 +58,6 @@
6058
pytest.mark.filterwarnings(
6159
"ignore:Passing a BlockManager to DataFrame:DeprecationWarning"
6260
),
63-
pytest.mark.xfail(using_string_dtype(), reason="TODO(infer_string)", strict=False),
6461
]
6562

6663

@@ -682,6 +679,7 @@ def postgresql_psycopg2_conn(postgresql_psycopg2_engine):
682679

683680
@pytest.fixture
684681
def postgresql_adbc_conn():
682+
pytest.importorskip("pyarrow")
685683
pytest.importorskip("adbc_driver_postgresql")
686684
from adbc_driver_postgresql import dbapi
687685

@@ -814,6 +812,7 @@ def sqlite_conn_types(sqlite_engine_types):
814812

815813
@pytest.fixture
816814
def sqlite_adbc_conn():
815+
pytest.importorskip("pyarrow")
817816
pytest.importorskip("adbc_driver_sqlite")
818817
from adbc_driver_sqlite import dbapi
819818

@@ -984,12 +983,17 @@ def test_dataframe_to_sql(conn, test_frame1, request):
984983
@pytest.mark.parametrize("conn", all_connectable)
985984
def test_dataframe_to_sql_empty(conn, test_frame1, request):
986985
if conn == "postgresql_adbc_conn":
987-
request.node.add_marker(
988-
pytest.mark.xfail(
989-
reason="postgres ADBC driver cannot insert index with null type",
990-
strict=True,
986+
adbc_driver_postgresql = pytest.importorskip("adbc_driver_postgresql")
987+
988+
if Version(adbc_driver_postgresql.__version__) < Version("1.2"):
989+
request.node.add_marker(
990+
pytest.mark.xfail(
991+
reason=(
992+
"postgres ADBC driver < 1.2 cannot insert index with null type",
993+
)
994+
)
991995
)
992-
)
996+
993997
# GH 51086 if conn is sqlite_engine
994998
conn = request.getfixturevalue(conn)
995999
empty_df = test_frame1.iloc[:0]
@@ -3554,7 +3558,8 @@ def test_read_sql_dtype_backend(
35543558
result = getattr(pd, func)(
35553559
f"Select * from {table}", conn, dtype_backend=dtype_backend
35563560
)
3557-
expected = dtype_backend_expected(string_storage, dtype_backend, conn_name)
3561+
expected = dtype_backend_expected(string_storage, dtype_backend, conn_name)
3562+
35583563
tm.assert_frame_equal(result, expected)
35593564

35603565
if "adbc" in conn_name:
@@ -3604,7 +3609,7 @@ def test_read_sql_dtype_backend_table(
36043609

36053610
with pd.option_context("mode.string_storage", string_storage):
36063611
result = getattr(pd, func)(table, conn, dtype_backend=dtype_backend)
3607-
expected = dtype_backend_expected(string_storage, dtype_backend, conn_name)
3612+
expected = dtype_backend_expected(string_storage, dtype_backend, conn_name)
36083613
tm.assert_frame_equal(result, expected)
36093614

36103615
if "adbc" in conn_name:
@@ -4120,7 +4125,7 @@ def tquery(query, con=None):
41204125
def test_xsqlite_basic(sqlite_buildin):
41214126
frame = DataFrame(
41224127
np.random.default_rng(2).standard_normal((10, 4)),
4123-
columns=Index(list("ABCD"), dtype=object),
4128+
columns=Index(list("ABCD")),
41244129
index=date_range("2000-01-01", periods=10, freq="B"),
41254130
)
41264131
assert sql.to_sql(frame, name="test_table", con=sqlite_buildin, index=False) == 10
@@ -4147,7 +4152,7 @@ def test_xsqlite_basic(sqlite_buildin):
41474152
def test_xsqlite_write_row_by_row(sqlite_buildin):
41484153
frame = DataFrame(
41494154
np.random.default_rng(2).standard_normal((10, 4)),
4150-
columns=Index(list("ABCD"), dtype=object),
4155+
columns=Index(list("ABCD")),
41514156
index=date_range("2000-01-01", periods=10, freq="B"),
41524157
)
41534158
frame.iloc[0, 0] = np.nan
@@ -4170,7 +4175,7 @@ def test_xsqlite_write_row_by_row(sqlite_buildin):
41704175
def test_xsqlite_execute(sqlite_buildin):
41714176
frame = DataFrame(
41724177
np.random.default_rng(2).standard_normal((10, 4)),
4173-
columns=Index(list("ABCD"), dtype=object),
4178+
columns=Index(list("ABCD")),
41744179
index=date_range("2000-01-01", periods=10, freq="B"),
41754180
)
41764181
create_sql = sql.get_schema(frame, "test")
@@ -4191,7 +4196,7 @@ def test_xsqlite_execute(sqlite_buildin):
41914196
def test_xsqlite_schema(sqlite_buildin):
41924197
frame = DataFrame(
41934198
np.random.default_rng(2).standard_normal((10, 4)),
4194-
columns=Index(list("ABCD"), dtype=object),
4199+
columns=Index(list("ABCD")),
41954200
index=date_range("2000-01-01", periods=10, freq="B"),
41964201
)
41974202
create_sql = sql.get_schema(frame, "test")

0 commit comments

Comments
 (0)