|
| 1 | +import numpy as np |
| 2 | +import pytest |
| 3 | + |
| 4 | +import pandas as pd |
| 5 | +from pandas import DataFrame, Series, Timestamp |
| 6 | +import pandas.util.testing as tm |
| 7 | + |
| 8 | + |
| 9 | +class TestDataFrameAppend: |
| 10 | + def test_append_empty_list(self): |
| 11 | + # GH 28769 |
| 12 | + df = DataFrame() |
| 13 | + result = df.append([]) |
| 14 | + expected = df |
| 15 | + tm.assert_frame_equal(result, expected) |
| 16 | + assert result is not df |
| 17 | + |
| 18 | + df = DataFrame(np.random.randn(5, 4), columns=["foo", "bar", "baz", "qux"]) |
| 19 | + result = df.append([]) |
| 20 | + expected = df |
| 21 | + tm.assert_frame_equal(result, expected) |
| 22 | + assert result is not df # .append() should return a new object |
| 23 | + |
| 24 | + def test_append_series_dict(self): |
| 25 | + df = DataFrame(np.random.randn(5, 4), columns=["foo", "bar", "baz", "qux"]) |
| 26 | + |
| 27 | + series = df.loc[4] |
| 28 | + msg = "Indexes have overlapping values" |
| 29 | + with pytest.raises(ValueError, match=msg): |
| 30 | + df.append(series, verify_integrity=True) |
| 31 | + |
| 32 | + series.name = None |
| 33 | + msg = "Can only append a Series if ignore_index=True" |
| 34 | + with pytest.raises(TypeError, match=msg): |
| 35 | + df.append(series, verify_integrity=True) |
| 36 | + |
| 37 | + result = df.append(series[::-1], ignore_index=True) |
| 38 | + expected = df.append( |
| 39 | + DataFrame({0: series[::-1]}, index=df.columns).T, ignore_index=True |
| 40 | + ) |
| 41 | + tm.assert_frame_equal(result, expected) |
| 42 | + |
| 43 | + # dict |
| 44 | + result = df.append(series.to_dict(), ignore_index=True) |
| 45 | + tm.assert_frame_equal(result, expected) |
| 46 | + |
| 47 | + result = df.append(series[::-1][:3], ignore_index=True) |
| 48 | + expected = df.append( |
| 49 | + DataFrame({0: series[::-1][:3]}).T, ignore_index=True, sort=True |
| 50 | + ) |
| 51 | + tm.assert_frame_equal(result, expected.loc[:, result.columns]) |
| 52 | + |
| 53 | + # can append when name set |
| 54 | + row = df.loc[4] |
| 55 | + row.name = 5 |
| 56 | + result = df.append(row) |
| 57 | + expected = df.append(df[-1:], ignore_index=True) |
| 58 | + tm.assert_frame_equal(result, expected) |
| 59 | + |
| 60 | + def test_append_list_of_series_dicts(self): |
| 61 | + df = DataFrame(np.random.randn(5, 4), columns=["foo", "bar", "baz", "qux"]) |
| 62 | + |
| 63 | + dicts = [x.to_dict() for idx, x in df.iterrows()] |
| 64 | + |
| 65 | + result = df.append(dicts, ignore_index=True) |
| 66 | + expected = df.append(df, ignore_index=True) |
| 67 | + tm.assert_frame_equal(result, expected) |
| 68 | + |
| 69 | + # different columns |
| 70 | + dicts = [ |
| 71 | + {"foo": 1, "bar": 2, "baz": 3, "peekaboo": 4}, |
| 72 | + {"foo": 5, "bar": 6, "baz": 7, "peekaboo": 8}, |
| 73 | + ] |
| 74 | + result = df.append(dicts, ignore_index=True, sort=True) |
| 75 | + expected = df.append(DataFrame(dicts), ignore_index=True, sort=True) |
| 76 | + tm.assert_frame_equal(result, expected) |
| 77 | + |
| 78 | + def test_append_missing_cols(self): |
| 79 | + # GH22252 |
| 80 | + # exercise the conditional branch in append method where the data |
| 81 | + # to be appended is a list and does not contain all columns that are in |
| 82 | + # the target DataFrame |
| 83 | + df = DataFrame(np.random.randn(5, 4), columns=["foo", "bar", "baz", "qux"]) |
| 84 | + |
| 85 | + dicts = [{"foo": 9}, {"bar": 10}] |
| 86 | + with tm.assert_produces_warning(None): |
| 87 | + result = df.append(dicts, ignore_index=True, sort=True) |
| 88 | + |
| 89 | + expected = df.append(DataFrame(dicts), ignore_index=True, sort=True) |
| 90 | + tm.assert_frame_equal(result, expected) |
| 91 | + |
| 92 | + def test_append_empty_dataframe(self): |
| 93 | + |
| 94 | + # Empty df append empty df |
| 95 | + df1 = DataFrame() |
| 96 | + df2 = DataFrame() |
| 97 | + result = df1.append(df2) |
| 98 | + expected = df1.copy() |
| 99 | + tm.assert_frame_equal(result, expected) |
| 100 | + |
| 101 | + # Non-empty df append empty df |
| 102 | + df1 = DataFrame(np.random.randn(5, 2)) |
| 103 | + df2 = DataFrame() |
| 104 | + result = df1.append(df2) |
| 105 | + expected = df1.copy() |
| 106 | + tm.assert_frame_equal(result, expected) |
| 107 | + |
| 108 | + # Empty df with columns append empty df |
| 109 | + df1 = DataFrame(columns=["bar", "foo"]) |
| 110 | + df2 = DataFrame() |
| 111 | + result = df1.append(df2) |
| 112 | + expected = df1.copy() |
| 113 | + tm.assert_frame_equal(result, expected) |
| 114 | + |
| 115 | + # Non-Empty df with columns append empty df |
| 116 | + df1 = DataFrame(np.random.randn(5, 2), columns=["bar", "foo"]) |
| 117 | + df2 = DataFrame() |
| 118 | + result = df1.append(df2) |
| 119 | + expected = df1.copy() |
| 120 | + tm.assert_frame_equal(result, expected) |
| 121 | + |
| 122 | + def test_append_dtypes(self): |
| 123 | + |
| 124 | + # GH 5754 |
| 125 | + # row appends of different dtypes (so need to do by-item) |
| 126 | + # can sometimes infer the correct type |
| 127 | + |
| 128 | + df1 = DataFrame({"bar": Timestamp("20130101")}, index=range(5)) |
| 129 | + df2 = DataFrame() |
| 130 | + result = df1.append(df2) |
| 131 | + expected = df1.copy() |
| 132 | + tm.assert_frame_equal(result, expected) |
| 133 | + |
| 134 | + df1 = DataFrame({"bar": Timestamp("20130101")}, index=range(1)) |
| 135 | + df2 = DataFrame({"bar": "foo"}, index=range(1, 2)) |
| 136 | + result = df1.append(df2) |
| 137 | + expected = DataFrame({"bar": [Timestamp("20130101"), "foo"]}) |
| 138 | + tm.assert_frame_equal(result, expected) |
| 139 | + |
| 140 | + df1 = DataFrame({"bar": Timestamp("20130101")}, index=range(1)) |
| 141 | + df2 = DataFrame({"bar": np.nan}, index=range(1, 2)) |
| 142 | + result = df1.append(df2) |
| 143 | + expected = DataFrame( |
| 144 | + {"bar": Series([Timestamp("20130101"), np.nan], dtype="M8[ns]")} |
| 145 | + ) |
| 146 | + tm.assert_frame_equal(result, expected) |
| 147 | + |
| 148 | + df1 = DataFrame({"bar": Timestamp("20130101")}, index=range(1)) |
| 149 | + df2 = DataFrame({"bar": np.nan}, index=range(1, 2), dtype=object) |
| 150 | + result = df1.append(df2) |
| 151 | + expected = DataFrame( |
| 152 | + {"bar": Series([Timestamp("20130101"), np.nan], dtype="M8[ns]")} |
| 153 | + ) |
| 154 | + tm.assert_frame_equal(result, expected) |
| 155 | + |
| 156 | + df1 = DataFrame({"bar": np.nan}, index=range(1)) |
| 157 | + df2 = DataFrame({"bar": Timestamp("20130101")}, index=range(1, 2)) |
| 158 | + result = df1.append(df2) |
| 159 | + expected = DataFrame( |
| 160 | + {"bar": Series([np.nan, Timestamp("20130101")], dtype="M8[ns]")} |
| 161 | + ) |
| 162 | + tm.assert_frame_equal(result, expected) |
| 163 | + |
| 164 | + df1 = DataFrame({"bar": Timestamp("20130101")}, index=range(1)) |
| 165 | + df2 = DataFrame({"bar": 1}, index=range(1, 2), dtype=object) |
| 166 | + result = df1.append(df2) |
| 167 | + expected = DataFrame({"bar": Series([Timestamp("20130101"), 1])}) |
| 168 | + tm.assert_frame_equal(result, expected) |
| 169 | + |
| 170 | + @pytest.mark.parametrize( |
| 171 | + "timestamp", ["2019-07-19 07:04:57+0100", "2019-07-19 07:04:57"] |
| 172 | + ) |
| 173 | + def test_append_timestamps_aware_or_naive(self, tz_naive_fixture, timestamp): |
| 174 | + # GH 30238 |
| 175 | + tz = tz_naive_fixture |
| 176 | + df = pd.DataFrame([pd.Timestamp(timestamp, tz=tz)]) |
| 177 | + result = df.append(df.iloc[0]).iloc[-1] |
| 178 | + expected = pd.Series(pd.Timestamp(timestamp, tz=tz), name=0) |
| 179 | + tm.assert_series_equal(result, expected) |
0 commit comments