@@ -410,52 +410,6 @@ def astype(self, dtype, copy=True):
410
410
data = self .to_numpy (na_value = na_value )
411
411
return astype_nansafe (data , dtype , copy = False )
412
412
413
- def value_counts (self , dropna = True ):
414
- """
415
- Returns a Series containing counts of each category.
416
-
417
- Every category will have an entry, even those with a count of 0.
418
-
419
- Parameters
420
- ----------
421
- dropna : bool, default True
422
- Don't include counts of NaN.
423
-
424
- Returns
425
- -------
426
- counts : Series
427
-
428
- See Also
429
- --------
430
- Series.value_counts
431
-
432
- """
433
-
434
- from pandas import Index , Series
435
-
436
- # compute counts on the data with no nans
437
- data = self ._data [~ self ._mask ]
438
- value_counts = Index (data ).value_counts ()
439
- array = value_counts .values
440
-
441
- # TODO(extension)
442
- # if we have allow Index to hold an ExtensionArray
443
- # this is easier
444
- index = value_counts .index .values .astype (bool ).astype (object )
445
-
446
- # if we want nans, count the mask
447
- if not dropna :
448
-
449
- # TODO(extension)
450
- # appending to an Index *always* infers
451
- # w/o passing the dtype
452
- array = np .append (array , [self ._mask .sum ()])
453
- index = Index (
454
- np .concatenate ([index , np .array ([np .nan ], dtype = object )]), dtype = object
455
- )
456
-
457
- return Series (array , index = index )
458
-
459
413
def _values_for_argsort (self ) -> np .ndarray :
460
414
"""
461
415
Return values for sorting.
0 commit comments