Skip to content

Commit 8bd19be

Browse files
Removed TestData in pandas/tests/frame/common.py
1 parent 0565b07 commit 8bd19be

File tree

1 file changed

+0
-124
lines changed

1 file changed

+0
-124
lines changed

pandas/tests/frame/common.py

-124
Original file line numberDiff line numberDiff line change
@@ -1,127 +1,3 @@
1-
import numpy as np
2-
3-
from pandas.util._decorators import cache_readonly
4-
5-
import pandas as pd
6-
import pandas.util.testing as tm
7-
8-
_seriesd = tm.getSeriesData()
9-
_tsd = tm.getTimeSeriesData()
10-
11-
_frame = pd.DataFrame(_seriesd)
12-
_frame2 = pd.DataFrame(_seriesd, columns=["D", "C", "B", "A"])
13-
_intframe = pd.DataFrame({k: v.astype(int) for k, v in _seriesd.items()})
14-
15-
_tsframe = pd.DataFrame(_tsd)
16-
17-
_mixed_frame = _frame.copy()
18-
_mixed_frame["foo"] = "bar"
19-
20-
21-
class TestData:
22-
@cache_readonly
23-
def frame(self):
24-
return _frame.copy()
25-
26-
@cache_readonly
27-
def frame2(self):
28-
return _frame2.copy()
29-
30-
@cache_readonly
31-
def intframe(self):
32-
# force these all to int64 to avoid platform testing issues
33-
return pd.DataFrame({c: s for c, s in _intframe.items()}, dtype=np.int64)
34-
35-
@cache_readonly
36-
def tsframe(self):
37-
return _tsframe.copy()
38-
39-
@cache_readonly
40-
def mixed_frame(self):
41-
return _mixed_frame.copy()
42-
43-
@cache_readonly
44-
def mixed_float(self):
45-
return pd.DataFrame(
46-
{
47-
"A": _frame["A"].copy().astype("float32"),
48-
"B": _frame["B"].copy().astype("float32"),
49-
"C": _frame["C"].copy().astype("float16"),
50-
"D": _frame["D"].copy().astype("float64"),
51-
}
52-
)
53-
54-
@cache_readonly
55-
def mixed_float2(self):
56-
return pd.DataFrame(
57-
{
58-
"A": _frame2["A"].copy().astype("float32"),
59-
"B": _frame2["B"].copy().astype("float32"),
60-
"C": _frame2["C"].copy().astype("float16"),
61-
"D": _frame2["D"].copy().astype("float64"),
62-
}
63-
)
64-
65-
@cache_readonly
66-
def mixed_int(self):
67-
return pd.DataFrame(
68-
{
69-
"A": _intframe["A"].copy().astype("int32"),
70-
"B": np.ones(len(_intframe["B"]), dtype="uint64"),
71-
"C": _intframe["C"].copy().astype("uint8"),
72-
"D": _intframe["D"].copy().astype("int64"),
73-
}
74-
)
75-
76-
@cache_readonly
77-
def all_mixed(self):
78-
return pd.DataFrame(
79-
{
80-
"a": 1.0,
81-
"b": 2,
82-
"c": "foo",
83-
"float32": np.array([1.0] * 10, dtype="float32"),
84-
"int32": np.array([1] * 10, dtype="int32"),
85-
},
86-
index=np.arange(10),
87-
)
88-
89-
@cache_readonly
90-
def tzframe(self):
91-
result = pd.DataFrame(
92-
{
93-
"A": pd.date_range("20130101", periods=3),
94-
"B": pd.date_range("20130101", periods=3, tz="US/Eastern"),
95-
"C": pd.date_range("20130101", periods=3, tz="CET"),
96-
}
97-
)
98-
result.iloc[1, 1] = pd.NaT
99-
result.iloc[1, 2] = pd.NaT
100-
return result
101-
102-
@cache_readonly
103-
def empty(self):
104-
return pd.DataFrame()
105-
106-
@cache_readonly
107-
def ts1(self):
108-
return tm.makeTimeSeries(nper=30)
109-
110-
@cache_readonly
111-
def ts2(self):
112-
return tm.makeTimeSeries(nper=30)[5:]
113-
114-
@cache_readonly
115-
def simple(self):
116-
arr = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]])
117-
118-
return pd.DataFrame(arr, columns=["one", "two", "three"], index=["a", "b", "c"])
119-
120-
121-
# self.ts3 = tm.makeTimeSeries()[-5:]
122-
# self.ts4 = tm.makeTimeSeries()[1:-1]
123-
124-
1251
def _check_mixed_float(df, dtype=None):
1262
# float16 are most likely to be upcasted to float32
1273
dtypes = dict(A="float32", B="float32", C="float16", D="float64")

0 commit comments

Comments
 (0)