|
| 1 | +import numpy as np |
| 2 | + |
| 3 | +import pandas as pd |
| 4 | +import pandas._testing as tm |
| 5 | + |
| 6 | + |
| 7 | +def test_data_frame_value_counts_unsorted(): |
| 8 | + df = pd.DataFrame( |
| 9 | + {"num_legs": [2, 4, 4, 6], "num_wings": [2, 0, 0, 0]}, |
| 10 | + index=["falcon", "dog", "cat", "ant"], |
| 11 | + ) |
| 12 | + |
| 13 | + result = df.value_counts(sort=False) |
| 14 | + expected = pd.Series( |
| 15 | + data=[1, 2, 1], |
| 16 | + index=pd.MultiIndex.from_arrays( |
| 17 | + [(2, 4, 6), (2, 0, 0)], names=["num_legs", "num_wings"] |
| 18 | + ), |
| 19 | + ) |
| 20 | + |
| 21 | + tm.assert_series_equal(result, expected) |
| 22 | + |
| 23 | + |
| 24 | +def test_data_frame_value_counts_ascending(): |
| 25 | + df = pd.DataFrame( |
| 26 | + {"num_legs": [2, 4, 4, 6], "num_wings": [2, 0, 0, 0]}, |
| 27 | + index=["falcon", "dog", "cat", "ant"], |
| 28 | + ) |
| 29 | + |
| 30 | + result = df.value_counts(ascending=True) |
| 31 | + expected = pd.Series( |
| 32 | + data=[1, 1, 2], |
| 33 | + index=pd.MultiIndex.from_arrays( |
| 34 | + [(2, 6, 4), (2, 0, 0)], names=["num_legs", "num_wings"] |
| 35 | + ), |
| 36 | + ) |
| 37 | + |
| 38 | + tm.assert_series_equal(result, expected) |
| 39 | + |
| 40 | + |
| 41 | +def test_data_frame_value_counts_default(): |
| 42 | + df = pd.DataFrame( |
| 43 | + {"num_legs": [2, 4, 4, 6], "num_wings": [2, 0, 0, 0]}, |
| 44 | + index=["falcon", "dog", "cat", "ant"], |
| 45 | + ) |
| 46 | + |
| 47 | + result = df.value_counts() |
| 48 | + expected = pd.Series( |
| 49 | + data=[2, 1, 1], |
| 50 | + index=pd.MultiIndex.from_arrays( |
| 51 | + [(4, 6, 2), (0, 0, 2)], names=["num_legs", "num_wings"] |
| 52 | + ), |
| 53 | + ) |
| 54 | + |
| 55 | + tm.assert_series_equal(result, expected) |
| 56 | + |
| 57 | + |
| 58 | +def test_data_frame_value_counts_normalize(): |
| 59 | + df = pd.DataFrame( |
| 60 | + {"num_legs": [2, 4, 4, 6], "num_wings": [2, 0, 0, 0]}, |
| 61 | + index=["falcon", "dog", "cat", "ant"], |
| 62 | + ) |
| 63 | + |
| 64 | + result = df.value_counts(normalize=True) |
| 65 | + expected = pd.Series( |
| 66 | + data=[0.5, 0.25, 0.25], |
| 67 | + index=pd.MultiIndex.from_arrays( |
| 68 | + [(4, 6, 2), (0, 0, 2)], names=["num_legs", "num_wings"] |
| 69 | + ), |
| 70 | + ) |
| 71 | + |
| 72 | + tm.assert_series_equal(result, expected) |
| 73 | + |
| 74 | + |
| 75 | +def test_data_frame_value_counts_single_col_default(): |
| 76 | + df = pd.DataFrame({"num_legs": [2, 4, 4, 6]}) |
| 77 | + |
| 78 | + result = df.value_counts() |
| 79 | + expected = pd.Series( |
| 80 | + data=[2, 1, 1], |
| 81 | + index=pd.MultiIndex.from_arrays([[4, 6, 2]], names=["num_legs"]), |
| 82 | + ) |
| 83 | + |
| 84 | + tm.assert_series_equal(result, expected) |
| 85 | + |
| 86 | + |
| 87 | +def test_data_frame_value_counts_empty(): |
| 88 | + df_no_cols = pd.DataFrame() |
| 89 | + |
| 90 | + result = df_no_cols.value_counts() |
| 91 | + expected = pd.Series([], dtype=np.int64) |
| 92 | + |
| 93 | + tm.assert_series_equal(result, expected) |
| 94 | + |
| 95 | + |
| 96 | +def test_data_frame_value_counts_empty_normalize(): |
| 97 | + df_no_cols = pd.DataFrame() |
| 98 | + |
| 99 | + result = df_no_cols.value_counts(normalize=True) |
| 100 | + expected = pd.Series([], dtype=np.float64) |
| 101 | + |
| 102 | + tm.assert_series_equal(result, expected) |
0 commit comments