@@ -139,22 +139,22 @@ def scatter_matrix(
139
139
140
140
>>> df = pd.DataFrame(np.random.randn(1000, 4), columns=['A','B','C','D'])
141
141
>>> pd.plotting.scatter_matrix(df, alpha=0.2)
142
- array([[<AxesSubplot:xlabel='A', ylabel='A'>,
143
- <AxesSubplot:xlabel='B', ylabel='A'>,
144
- <AxesSubplot:xlabel='C', ylabel='A'>,
145
- <AxesSubplot:xlabel='D', ylabel='A'>],
146
- [<AxesSubplot:xlabel='A', ylabel='B'>,
147
- <AxesSubplot:xlabel='B', ylabel='B'>,
148
- <AxesSubplot:xlabel='C', ylabel='B'>,
149
- <AxesSubplot:xlabel='D', ylabel='B'>],
150
- [<AxesSubplot:xlabel='A', ylabel='C'>,
151
- <AxesSubplot:xlabel='B', ylabel='C'>,
152
- <AxesSubplot:xlabel='C', ylabel='C'>,
153
- <AxesSubplot:xlabel='D', ylabel='C'>],
154
- [<AxesSubplot:xlabel='A', ylabel='D'>,
155
- <AxesSubplot:xlabel='B', ylabel='D'>,
156
- <AxesSubplot:xlabel='C', ylabel='D'>,
157
- <AxesSubplot:xlabel='D', ylabel='D'>]], dtype=object)
142
+ array([[<AxesSubplot: xlabel='A', ylabel='A'>,
143
+ <AxesSubplot: xlabel='B', ylabel='A'>,
144
+ <AxesSubplot: xlabel='C', ylabel='A'>,
145
+ <AxesSubplot: xlabel='D', ylabel='A'>],
146
+ [<AxesSubplot: xlabel='A', ylabel='B'>,
147
+ <AxesSubplot: xlabel='B', ylabel='B'>,
148
+ <AxesSubplot: xlabel='C', ylabel='B'>,
149
+ <AxesSubplot: xlabel='D', ylabel='B'>],
150
+ [<AxesSubplot: xlabel='A', ylabel='C'>,
151
+ <AxesSubplot: xlabel='B', ylabel='C'>,
152
+ <AxesSubplot: xlabel='C', ylabel='C'>,
153
+ <AxesSubplot: xlabel='D', ylabel='C'>],
154
+ [<AxesSubplot: xlabel='A', ylabel='D'>,
155
+ <AxesSubplot: xlabel='B', ylabel='D'>,
156
+ <AxesSubplot: xlabel='C', ylabel='D'>,
157
+ <AxesSubplot: xlabel='D', ylabel='D'>]], dtype=object)
158
158
"""
159
159
plot_backend = _get_plot_backend ("matplotlib" )
160
160
return plot_backend .scatter_matrix (
@@ -247,7 +247,7 @@ def radviz(
247
247
... }
248
248
... )
249
249
>>> pd.plotting.radviz(df, 'Category')
250
- <AxesSubplot:xlabel='y(t)', ylabel='y(t + 1)'>
250
+ <AxesSubplot: xlabel='y(t)', ylabel='y(t + 1)'>
251
251
"""
252
252
plot_backend = _get_plot_backend ("matplotlib" )
253
253
return plot_backend .radviz (
@@ -315,7 +315,7 @@ def andrews_curves(
315
315
... 'pandas/main/pandas/tests/io/data/csv/iris.csv'
316
316
... )
317
317
>>> pd.plotting.andrews_curves(df, 'Name')
318
- <AxesSubplot:title={'center':'width'}>
318
+ <AxesSubplot: title={'center': 'width'}>
319
319
"""
320
320
plot_backend = _get_plot_backend ("matplotlib" )
321
321
return plot_backend .andrews_curves (
@@ -449,7 +449,7 @@ def parallel_coordinates(
449
449
>>> pd.plotting.parallel_coordinates(
450
450
... df, 'Name', color=('#556270', '#4ECDC4', '#C7F464')
451
451
... )
452
- <AxesSubplot:xlabel='y(t)', ylabel='y(t + 1)'>
452
+ <AxesSubplot: xlabel='y(t)', ylabel='y(t + 1)'>
453
453
"""
454
454
plot_backend = _get_plot_backend ("matplotlib" )
455
455
return plot_backend .parallel_coordinates (
@@ -500,15 +500,15 @@ def lag_plot(series: Series, lag: int = 1, ax: Axes | None = None, **kwds) -> Ax
500
500
>>> x = np.cumsum(np.random.normal(loc=1, scale=5, size=50))
501
501
>>> s = pd.Series(x)
502
502
>>> s.plot()
503
- <AxesSubplot:xlabel='Midrange'>
503
+ <AxesSubplot: xlabel='Midrange'>
504
504
505
505
A lag plot with ``lag=1`` returns
506
506
507
507
.. plot::
508
508
:context: close-figs
509
509
510
510
>>> pd.plotting.lag_plot(s, lag=1)
511
- <AxesSubplot:xlabel='y(t)', ylabel='y(t + 1)'>
511
+ <AxesSubplot: xlabel='y(t)', ylabel='y(t + 1)'>
512
512
"""
513
513
plot_backend = _get_plot_backend ("matplotlib" )
514
514
return plot_backend .lag_plot (series = series , lag = lag , ax = ax , ** kwds )
@@ -543,7 +543,7 @@ def autocorrelation_plot(series: Series, ax: Axes | None = None, **kwargs) -> Ax
543
543
>>> spacing = np.linspace(-9 * np.pi, 9 * np.pi, num=1000)
544
544
>>> s = pd.Series(0.7 * np.random.rand(1000) + 0.3 * np.sin(spacing))
545
545
>>> pd.plotting.autocorrelation_plot(s)
546
- <AxesSubplot:title={'center':'width'}, xlabel='Lag', ylabel='Autocorrelation'>
546
+ <AxesSubplot: title={'center': 'width'}, xlabel='Lag', ylabel='Autocorrelation'>
547
547
"""
548
548
plot_backend = _get_plot_backend ("matplotlib" )
549
549
return plot_backend .autocorrelation_plot (series = series , ax = ax , ** kwargs )
0 commit comments