Skip to content

Commit 85134cd

Browse files
committed
STY: autopep8
1 parent c4b0a22 commit 85134cd

File tree

10 files changed

+741
-546
lines changed

10 files changed

+741
-546
lines changed

pandas/tools/merge.py

+44-31
Original file line numberDiff line numberDiff line change
@@ -181,8 +181,8 @@ def __init__(self, left, right, how='inner', on=None,
181181
elif isinstance(self.indicator, bool):
182182
self.indicator_name = '_merge' if self.indicator else None
183183
else:
184-
raise ValueError('indicator option can only accept boolean or string arguments')
185-
184+
raise ValueError(
185+
'indicator option can only accept boolean or string arguments')
186186

187187
# note this function has side effects
188188
(self.left_join_keys,
@@ -191,7 +191,8 @@ def __init__(self, left, right, how='inner', on=None,
191191

192192
def get_result(self):
193193
if self.indicator:
194-
self.left, self.right = self._indicator_pre_merge(self.left, self.right)
194+
self.left, self.right = self._indicator_pre_merge(
195+
self.left, self.right)
195196

196197
join_index, left_indexer, right_indexer = self._get_join_info()
197198

@@ -225,9 +226,11 @@ def _indicator_pre_merge(self, left, right):
225226

226227
for i in ['_left_indicator', '_right_indicator']:
227228
if i in columns:
228-
raise ValueError("Cannot use `indicator=True` option when data contains a column named {}".format(i))
229+
raise ValueError(
230+
"Cannot use `indicator=True` option when data contains a column named {}".format(i))
229231
if self.indicator_name in columns:
230-
raise ValueError("Cannot use name of an existing column for indicator column")
232+
raise ValueError(
233+
"Cannot use name of an existing column for indicator column")
231234

232235
left = left.copy()
233236
right = right.copy()
@@ -245,10 +248,13 @@ def _indicator_post_merge(self, result):
245248
result['_left_indicator'] = result['_left_indicator'].fillna(0)
246249
result['_right_indicator'] = result['_right_indicator'].fillna(0)
247250

248-
result[self.indicator_name] = Categorical((result['_left_indicator'] + result['_right_indicator']), categories=[1,2,3])
249-
result[self.indicator_name] = result[self.indicator_name].cat.rename_categories(['left_only', 'right_only', 'both'])
251+
result[self.indicator_name] = Categorical(
252+
(result['_left_indicator'] + result['_right_indicator']), categories=[1, 2, 3])
253+
result[self.indicator_name] = result[self.indicator_name].cat.rename_categories(
254+
['left_only', 'right_only', 'both'])
250255

251-
result = result.drop(labels=['_left_indicator', '_right_indicator'], axis=1)
256+
result = result.drop(
257+
labels=['_left_indicator', '_right_indicator'], axis=1)
252258

253259
return result
254260

@@ -274,8 +280,8 @@ def _maybe_add_join_keys(self, result, left_indexer, right_indexer):
274280
continue
275281

276282
right_na_indexer = right_indexer.take(na_indexer)
277-
result.iloc[na_indexer,key_indexer] = com.take_1d(self.right_join_keys[i],
278-
right_na_indexer)
283+
result.iloc[na_indexer, key_indexer] = com.take_1d(self.right_join_keys[i],
284+
right_na_indexer)
279285
elif name in self.right:
280286
if len(self.right) == 0:
281287
continue
@@ -285,8 +291,8 @@ def _maybe_add_join_keys(self, result, left_indexer, right_indexer):
285291
continue
286292

287293
left_na_indexer = left_indexer.take(na_indexer)
288-
result.iloc[na_indexer,key_indexer] = com.take_1d(self.left_join_keys[i],
289-
left_na_indexer)
294+
result.iloc[na_indexer, key_indexer] = com.take_1d(self.left_join_keys[i],
295+
left_na_indexer)
290296
elif left_indexer is not None \
291297
and isinstance(self.left_join_keys[i], np.ndarray):
292298

@@ -384,8 +390,10 @@ def _get_merge_keys(self):
384390
left_drop = []
385391
left, right = self.left, self.right
386392

387-
is_lkey = lambda x: isinstance(x, (np.ndarray, ABCSeries)) and len(x) == len(left)
388-
is_rkey = lambda x: isinstance(x, (np.ndarray, ABCSeries)) and len(x) == len(right)
393+
is_lkey = lambda x: isinstance(
394+
x, (np.ndarray, ABCSeries)) and len(x) == len(left)
395+
is_rkey = lambda x: isinstance(
396+
x, (np.ndarray, ABCSeries)) and len(x) == len(right)
389397

390398
# ugh, spaghetti re #733
391399
if _any(self.left_on) and _any(self.right_on):
@@ -507,13 +515,13 @@ def _get_join_indexers(left_keys, right_keys, sort=False, how='inner'):
507515
from functools import partial
508516

509517
assert len(left_keys) == len(right_keys), \
510-
'left_key and right_keys must be the same length'
518+
'left_key and right_keys must be the same length'
511519

512520
# bind `sort` arg. of _factorize_keys
513521
fkeys = partial(_factorize_keys, sort=sort)
514522

515523
# get left & right join labels and num. of levels at each location
516-
llab, rlab, shape = map(list, zip( * map(fkeys, left_keys, right_keys)))
524+
llab, rlab, shape = map(list, zip(* map(fkeys, left_keys, right_keys)))
517525

518526
# get flat i8 keys from label lists
519527
lkey, rkey = _get_join_keys(llab, rlab, shape, sort)
@@ -524,7 +532,7 @@ def _get_join_indexers(left_keys, right_keys, sort=False, how='inner'):
524532
lkey, rkey, count = fkeys(lkey, rkey)
525533

526534
# preserve left frame order if how == 'left' and sort == False
527-
kwargs = {'sort':sort} if how == 'left' else {}
535+
kwargs = {'sort': sort} if how == 'left' else {}
528536
join_func = _join_functions[how]
529537
return join_func(lkey, rkey, count, **kwargs)
530538

@@ -563,8 +571,10 @@ def get_result(self):
563571
left_join_indexer = left_indexer
564572
right_join_indexer = right_indexer
565573

566-
lindexers = {1: left_join_indexer} if left_join_indexer is not None else {}
567-
rindexers = {1: right_join_indexer} if right_join_indexer is not None else {}
574+
lindexers = {
575+
1: left_join_indexer} if left_join_indexer is not None else {}
576+
rindexers = {
577+
1: right_join_indexer} if right_join_indexer is not None else {}
568578

569579
result_data = concatenate_block_managers(
570580
[(ldata, lindexers), (rdata, rindexers)],
@@ -586,7 +596,7 @@ def _get_multiindex_indexer(join_keys, index, sort):
586596
fkeys = partial(_factorize_keys, sort=sort)
587597

588598
# left & right join labels and num. of levels at each location
589-
rlab, llab, shape = map(list, zip( * map(fkeys, index.levels, join_keys)))
599+
rlab, llab, shape = map(list, zip(* map(fkeys, index.levels, join_keys)))
590600
if sort:
591601
rlab = list(map(np.take, rlab, index.labels))
592602
else:
@@ -885,10 +895,10 @@ def __init__(self, objs, axis=0, join='outer', join_axes=None,
885895
else:
886896
# filter out the empties
887897
# if we have not multi-index possibiltes
888-
df = DataFrame([ obj.shape for obj in objs ]).sum(1)
889-
non_empties = df[df!=0]
898+
df = DataFrame([obj.shape for obj in objs]).sum(1)
899+
non_empties = df[df != 0]
890900
if len(non_empties) and (keys is None and names is None and levels is None and join_axes is None):
891-
objs = [ objs[i] for i in non_empties.index ]
901+
objs = [objs[i] for i in non_empties.index]
892902
sample = objs[0]
893903

894904
if sample is None:
@@ -917,12 +927,12 @@ def __init__(self, objs, axis=0, join='outer', join_axes=None,
917927
if ndim == max_ndim:
918928
pass
919929

920-
elif ndim != max_ndim-1:
930+
elif ndim != max_ndim - 1:
921931
raise ValueError("cannot concatenate unaligned mixed "
922932
"dimensional NDFrame objects")
923933

924934
else:
925-
name = getattr(obj,'name',None)
935+
name = getattr(obj, 'name', None)
926936
if ignore_index or name is None:
927937
name = current_column
928938
current_column += 1
@@ -931,7 +941,7 @@ def __init__(self, objs, axis=0, join='outer', join_axes=None,
931941
# to line up
932942
if self._is_frame and axis == 1:
933943
name = 0
934-
obj = sample._constructor({ name : obj })
944+
obj = sample._constructor({name: obj})
935945

936946
self.objs.append(obj)
937947

@@ -965,9 +975,11 @@ def get_result(self):
965975
index, columns = self.new_axes
966976
tmpdf = DataFrame(data, index=index)
967977
# checks if the column variable already stores valid column names (because set via the 'key' argument
968-
# in the 'concat' function call. If that's not the case, use the series names as column names
978+
# in the 'concat' function call. If that's not the case, use
979+
# the series names as column names
969980
if columns.equals(Index(np.arange(len(self.objs)))) and not self.ignore_index:
970-
columns = np.array([ data[i].name for i in range(len(data)) ], dtype='object')
981+
columns = np.array(
982+
[data[i].name for i in range(len(data))], dtype='object')
971983
indexer = isnull(columns)
972984
if indexer.any():
973985
columns[indexer] = np.arange(len(indexer[indexer]))
@@ -1091,7 +1103,7 @@ def _maybe_check_integrity(self, concat_index):
10911103
if not concat_index.is_unique:
10921104
overlap = concat_index.get_duplicates()
10931105
raise ValueError('Indexes have overlapping values: %s'
1094-
% str(overlap))
1106+
% str(overlap))
10951107

10961108

10971109
def _concat_indexes(indexes):
@@ -1106,7 +1118,8 @@ def _make_concat_multiindex(indexes, keys, levels=None, names=None):
11061118
names = [None] * len(zipped)
11071119

11081120
if levels is None:
1109-
levels = [Categorical.from_array(zp, ordered=True).categories for zp in zipped]
1121+
levels = [Categorical.from_array(
1122+
zp, ordered=True).categories for zp in zipped]
11101123
else:
11111124
levels = [_ensure_index(x) for x in levels]
11121125
else:
@@ -1152,7 +1165,7 @@ def _make_concat_multiindex(indexes, keys, levels=None, names=None):
11521165
names = list(names)
11531166
else:
11541167
# make sure that all of the passed indices have the same nlevels
1155-
if not len(set([ i.nlevels for i in indexes ])) == 1:
1168+
if not len(set([i.nlevels for i in indexes])) == 1:
11561169
raise AssertionError("Cannot concat indices that do"
11571170
" not have the same number of levels")
11581171

pandas/tools/pivot.py

+5-3
Original file line numberDiff line numberDiff line change
@@ -124,7 +124,7 @@ def pivot_table(data, values=None, index=None, columns=None, aggfunc='mean',
124124
m = MultiIndex.from_arrays(cartesian_product(table.index.levels))
125125
table = table.reindex_axis(m, axis=0)
126126
except AttributeError:
127-
pass # it's a single level
127+
pass # it's a single level
128128

129129
try:
130130
m = MultiIndex.from_arrays(cartesian_product(table.columns.levels))
@@ -197,7 +197,7 @@ def _add_margins(table, data, values, rows, cols, aggfunc,
197197
result, margin_keys, row_margin = marginal_result_set
198198
else:
199199
marginal_result_set = _generate_marginal_results_without_values(
200-
table, data, rows, cols, aggfunc, margins_name)
200+
table, data, rows, cols, aggfunc, margins_name)
201201
if not isinstance(marginal_result_set, tuple):
202202
return marginal_result_set
203203
result, margin_keys, row_margin = marginal_result_set
@@ -273,7 +273,8 @@ def _all_key(key):
273273
except TypeError:
274274

275275
# we cannot reshape, so coerce the axis
276-
piece.set_axis(cat_axis, piece._get_axis(cat_axis)._to_safe_for_reshape())
276+
piece.set_axis(cat_axis, piece._get_axis(
277+
cat_axis)._to_safe_for_reshape())
277278
piece[all_key] = margin[key]
278279

279280
table_pieces.append(piece)
@@ -356,6 +357,7 @@ def _convert_by(by):
356357
by = list(by)
357358
return by
358359

360+
359361
def crosstab(index, columns, values=None, rownames=None, colnames=None,
360362
aggfunc=None, margins=False, dropna=True):
361363
"""

0 commit comments

Comments
 (0)